intersijl.

80C286

High Performance Microprocessor

January 28, 2008 with Memory Management and Protection

Features
* Compatible with NMOS 80286
* Wide Range of Clock Rates
- DC to 25MHz (80C286-25)
DC to 20MHz (80C286-20)
DC to 16MHz (80C286-16)
DC to 12.5MHz (80C286-12)
DC to 10MHz (80C286-10)
* Static CMOS Design for Low Power Operation
- ICCSB = 5mA Maximum
- ICCOP = 185mA Maximum (80C286-10)
220mA Maximum (80C286-12)
260mA Maximum (80C286-16)
310mA Maximum (80C286-20)
410mA Maximum (80C286-25)
* High Performance Processor (Up to 19 Times the 8086
Throughput)
* Large Address Space
* 16 Megabytes Physical/1 Gigabyte Virtual per Task
* Integrated Memory Management, Four-Level Memory
Protection and Support for Virtual Memory and Operat-
ing Systems
* Two 80C86 Upward Compatible Operating Modes
- 80C286 Real Address Mode
- PVAM
* Compatible with 80287 Numeric Data Co-Processor
* High Bandwidth Bus Interface (25 Megabyte/Sec)
* Available In
- 68 Pin PGA (Commercial, Industrial, and Military)
- 68 Pin PLCC (Commercial and Industrial)

Description

The Intersil 80C286 is a static CMOS version of the NMOS
80286 microprocessor. The 80C286 is an advanced, high-
performance microprocessor with specially optimized capa-
bilities for muliiple user and multi-tasking systems. The
80C286 has built-in memory protection that supports operat-
ing system and task isolation as well as program and data
privacy within tasks. A 256MHz 80C286 provides up to nine-
teen times the throughput of a standard 5MHz 8086. The
80C286 includes memory management capabilities that map
230 (one gigabyte) of virtual address space per task into 224
bytes (16 megabytes) of physical memory.

The 80C286 is upwardly compatible with 80C86 and 80C88
software (the 80C286 instruction set is a superset of the
80C86/80C88 instruction set). Using the 80C286 real
address mode, the 80C286 is object code compatible with
existing 80C86 and 80C88 software. In protected virtual
address mode, the 80C286 is source code compatible with
80C86 and 80C88 software but may require upgrading to
use virtual address as supported by the 80C286'’s integrated
memory management and protection mechanism. Both
modes operate at full 80C286 performance and execute a
superset of the 80C86 and 80C88 instructions.

The 80C286 provides special operations to support the effi-
cient implementation and execution of operating systems.
For example, one instruction can end execution of one task,
save its state, switch to a new task, load its state, and start
execution of the new task. The 80C286 also supports virtual
memory systems by providing a segment-not-present excep-
tion and restartable instructions.

Ordering Information

PACKAGE | TEMP. RANGE 10MHz 12.5MHz 16MHz 20MHz 25MHz PKG. NO.
PGA 0°C to +70°C - CG80C286-12 CG80C286-16 CG80C286-20 - G68.B

-40°C to +85°C | 1G80G286-10 1G80C286-12 - - - G68.B

-559C to +125°C | 5962- 5962- - - - G68.B

9067801MXC 9067802MXC

PLCC 0°C to +70°C - CS80C286-12 CS80C286-16 CS80C286-20 CS80C286-25 N68.95

-409C to +85°C | 1S80C286-10 1S80C286-12 1S80C286-16 1S80C286-20 - N68.95

AN, Toss s 1 sreis o Sl s, o pepe € g oo FN2947.3

Gopyright @ Intersil Americas Inc. 2003-2008. All Rights Reserved
All other trademarks mentioned are the property of their respective owners.

80C286

Pinouts

68 LEAD PGA

Component Pad View - As viewed from underside of the component when mounted on the board.

Vs
D8

D9

D10
D11
D12
D13
D14

E
®
®

@OEOE®OE®
AD Do @ ERROR NC
A2 A1 @ @@ NG BUSY
Veo O | (30) 3D GICI LR
A3 RESET NI NG
AS a3 @) PEREQ Vg
A7 hs @@ @ READY Vcc
o m | @E HLDA HOLD
an a0 | @ @) MG COD/INTA
me a2 |@EOOOE@E@EEEOOE® (v wx
DEEOOOO ®\/
Sz 325§ 8 E 5\5 \‘\ PIN 1 INDICATOR
$5:85883 /
68 LEAD PGA
P.C. Board View - As viewed from the component side of the P.C. board.
8
B B 8 8 8 8 8 58 8
OEPOE®OE®®
NC ERROR | @D @@ ®@®® @®@@®E |>
BusY Ne @@ @ a1 A2
NG NR | GO @) CLK Vee
NG NV @ RESET A3
Vgs PEREQ @ A As
Voo mEsDY 06 |x =
HoD HDA | (&) (&) @@ |2
COD/INTA M/IO @@ a0 an
ok e [(@RAQOOOOE@OEE® (a2
OO0 0000B®
/' /
PIN 1 INDICATOR &3’5 E § 3z
4259555883

80C286

Pinouts (Continued)

68 LEAD PLCC

P.C. Board View - As viewed from the component side of the P.C. board.

=

LOCK, HLDA
D1s5-Do

E » o «
35533 of u= &2
PIN 1 NDICATOR §ES§%E>"’E>““§%E%%EE%
minininininininininininininininin MOLD MARK DOES NOT
68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 fINDIDATEPIN1
BHE [1 . 51 [] D15
NC [2 50 [] D7
NC [3 49 [] D14
sS1a 48 [] D&
So[]s a7 [] D13
PEACK [] & 46] D5
A23[]7 45 [] D12
Az2 8 44 [] Da
Vss [@ 43[] D11
A1 10 42{] D3
Azo M 41 [] D1o
A19 [] 12 40 [] D2
At [] 13 39 [] Ds
A7 [] 14 3B D
Al6 [] 15 37] D8
A1s [16 36 [] Do
A4 []17 35 [Vss
18192021222324 252627282930 31323334
HjN|N|N|E|N|E|N|N|N|N|N|N|N|N|N]N
Mo ~—"o@@M~oWw=MN LD N T o
EEEE“““‘Eé’d“‘
&
Functional Diagram
| ADDRESS UNIT (AU) I\ ADDRESS 1 A Ao
: I/ LATCHES AND DRIVERS 7 > ﬁ, M.fi_o
; PRE- PROCESSOR |— 1> PEACK
| FETCHER EXTENSION |, PEREQ
I SEGMENT INTERFACE I READY
] BASES “— HOLD,
I C;IBI:JS;J SEGMENTE = = = = = BUS CONTROL 1 1,50
: LIMIT | SEGMENT COD/INTA,
|
I
I

cHECKER| sizes
DATA TRANSCEIVERS
1
____::::4&::::::: 4 ! 6-BYTE
, i | PREFETCH
ALY ! ' QUELE BUS UNIT (BU)
' B | St
1
1 r=—J|--—-=-=-X] /- —"—-—"=-=—==== ==
CONTROL l
U e oneD [instrucTIoN| INsTRUCTION
i —— el DECODER UNIT (IU)
* A & & \ I I

l¢—— RESET
j[¢—— CLK
— Vgs
[¢— V¢

NMI
INTR ERROR

80C286

Pin Descr ipﬁons The following pin function descriptions are for the 80C286 microprocessor.

SYMBOL

PIN
NUMBER

TYPE

DESCRIPTION

CLK

31

SYSTEM CLOCK: provides the fundamental timing for the 80C286 system. It is divided by two inside
the 80C286 to generate the processor clock. The internal divide-by-two circuitry can be synchro-
nized to an external clock generator by a LOW to HIGH transition on the RESET input.

D15-Dg

36 - 51

1{0]

DATA BUS: inputs data during memory, I/O, and interrupt acknowledge read cycles; outputs data
during memory and /O write cycles. The data bus is active HIGH and is held at high impedance to
the last valid logic level during bus hold acknowledge.

Agz-Ag

7-8
10-28
32 -43

ADDRESS BUS: outputs physical memory and I/O port addresses. Agg - Aqg are LOW during I/O
tfransfers. Ag is LOW when data is to be transferred on pins D7 - Dg (see table below). The address
bus is active High and floats to three-state off during bus hold acknowledge.

os]
T
m

BUS HIGH ENABLE: indicates transfer of data on the upper byte of the data bus, D5 - Dg. Eight-bit
oriented devices assigned to the upper byte of the data bus would normally use BHE to condition chip
select functions. BHE is active LOW and floats to three-state OFF during bus hold acknowledge.

BHE AND Ay ENCODINGS

HE VALUE Ag VALUE FUNCTION

0 Word transfer

0
0 1 Byte transfer on upper half of data bus (D15 - Dg)

1 0 Byte transfer on lower half of data bus (D7 - Dp)

1 1 Reserved

K
g
=}

45

BUS CYCLE STATUS: indicates initiation of a bus cycle and along with M/IO and COD/INTA, de-
fines the type of bus cycle. The bus is in a Tg state whenever one or both are LOW. S1 and SO are
active LOW and are held at a high impedance logic one during bus hold acknowledge.

80C286 BUS CYCLE STATUS DEFINITION

COD/INTA | M/IO | S1 So BUS CYCLE INITIATED
o(LOW) 0 0 0 |Interrupt acknowledge
0 0 0 1 | Reserved
0 0 1 0 |Reserved
0 0 1 1 | None; not a status cycle
0 1 0 0 |If Ay =1 then halt; else shutdown
0 1 0 1 |Memory data read
0 1 1 0 |Memory data write
0 1 1 1 | None; not a status cycle
1(HIGH) 0 0 0 |Reserved
1 0 0 1 |I/O read
1 0 1 0 |1/O write
1 0 1 1 | None; not a status cycle
1 1 0 0 |Reserved
1 1 0 1 | Memory instruction read
1 1 1 0 |Reserved
1 1 1 1 | None; not a status cycle

80C286

Pin Descr ipﬁons The following pin function descriptions are for the 80C286 microprocessor. (Continued)

SYMBOL

PIN
NUMBER

TYPE

DESCRIPTION

67

MEMORY I/O SELECT: distinguishes memory access from |/O access. If HIGH during Tg, a mem-
ory cycle or a halt/shutdown cycle is in progress. If LOW, an /O cycle or an interrupt acknowledge
cycle is in progress. M/10 is held at high impedance 1o the last valid logic state during bus hold ac-
knowledge.

COD/INTA

66

CODE/INTERRUPT ACKNOWLEDGE: distinguishes instruction fetch cycles from memory data
read cycles. Also distinguishes interrupt acknowledge cycles from 1/0 cycles. COD/INTA is held at
high impedance to the last valid logic state during bus hold acknowledge. lis timing is the same as
M/TO.

LOCK

68

BUS LOCK: indicates that other system bus masters are not to gain control of the system bus for
the current and following bus cycles. The LOCK signal may be activated explicitly by the “LOCK”
instruction prefix or automatically by 80G286 hardware during memory XCHG instructions, interrupt
acknowledge, or descriptor table access. LOCK is active LOW and is held at a high impedance logic
one during bus hold acknowledge.

READY

63

BUS READY: terminates a bus cycle. Bus cycles are extended without limit until terminated by
READY LOW. READY is an active LOW synchronous input requiring setup and hold times relative
to the system clock be met for correct operation. READY is ignored during bus hold acknowledge.
(See Note 1)

HOLD
HLDA

BUS HOLD REQUEST AND HOLD ACKNOWLEDGE: control ownership of the 80G286 local bus.
The HOLD input allows another local bus master to request control of the local bus. When control is
granted, the 80C286 will float its bus drivers and then activate HLDA, thus entering the bus hold ac-
knowledge condition. The local bus will remain granted to the requesting master until HOLD be-
comes inactive which resulis in the 80C286 deactivating HLDA and regaining control of the local
bus. This terminates the bus hold acknowledge condition. HOLD may be asynchronous to the sys-
tem clock. These signals are active HIGH. Note that HLDA never floats.

INTR

57

INTERRUPT REQUEST: requires the 80C286 to suspend its current program execution and service
a pending external request. Interrupt requests are masked whenever the interrupt enable bit in the
flag word is cleared. When the 80C286 responds to an interrupt request, it performs two interrupt
acknowledge bus cycles to read an 8-bit interrupt vector that identifies the source of the interrupt.
To ensure program interruption, INTR must remain active until an interrupt acknowledge bus cycle
is initiated. INTR is sampled at the beginning of each processor cycle and must be active HIGH at
least two processor cycles before the current instruction ends in order to interrupt before the next
instruction. INTR is level sensitive, active HIGH, and may be asynchronous to the system clock.

NMI

59

NON-MASKABLE INTERRUPT REQUEST: interrupts the 80C286 with an internally supplied vector
value of two. No interrupt acknowledge cycles are performed. The interrupt enable bit in the 80C286
flag word does not affect this input. The NMI input is active HIGH, may be asynchronous to the sys-
tem clock, and is edge triggered after internal synchronization. For proper recognition, the input must
have been previously LOW for at least four system clock cycles and remain HIGH for at least four
system clock cycles.

PROCESSOR EXTENSION OPERAND REQUEST AND ACKNOWLEDGE: extend the memory
management and protection capabilities of the 80C286 to processor extensions. The PEREQ input
requests the 80C286 to perform a data operand transfer for a processor extension. The PEACK out-
put signals the processor extension when the requested operand is being fransferred. PEREQ is ac-
tive HIGH. PEACK is active LOW and is held at a high impedance logic one during bus hold
acknowledge. PEREQ may be asynchronous to the system clock.

PROCESSOR EXTENSION BUSY AND ERROR: indicates the operating condition of a processor
extension to the 80C286. An active BUSY input stops 80C286 program execution on WAIT and
some ESC instructions until BUSY becomes inactive (HIGH). The 80C286 may be interrupted while
waiting for BUSY to become inactive. An active ERROR input causes the 80C286 to perform a pro-
cessor extension interrupt when executing WAIT or some ESC instructions. These inputs are active
LOW and may be asynchronous to the system clock.

80C286

Pin Descr ipﬁons The following pin function descriptions are for the 80C286 microprocessor. (Continued)

SYMBOL

PIN
NUMBER

TYPE

DESCRIPTION

RESET

29

SYSTEM RESET: clears the internal logic of the 80C286 and is active HIGH. The 80C286 may be
reinitialize at any time with a LOW to HIGH transition on RESET which remains active for more than
16 system clock cycles. During RESET active, the output pins of the 80C286 enter the state shown
below.

80C286 PIN STATE DURING RESET

PIN VALUE PIN NAMES

1 (HIGH) S0, ST, PEACK, Ags - Ag, BHE, LOCK

0 (LOW) M/TO, COD/INTA, HLDA (Note 2)

HIGH IMPEDANCE

D15-D0

Operation of the 80C286 begins after a HIGH to LOW transition on RESET. The HIGH to LOW
transition of RESET must be synchronous to the system clock. Approximately 50 system clock
cycles are required by the 80G286 for internal initializations before the first bus cycle to feich code
from the power-on execution address is performed. A LOW to HIGH transition of RESET
synchronous to the system clock will end a processor cycle at the second HIGH to LOW transition
of the system clock. The LOW to HIGH transition of RESET may be asynchronous to the system
clock; however, in this case it cannot be predetermined which phase of the processor clock will occur
during the next system clock period. Synchronous LOW to HIGH transitions of RESET are required

only for systems where the processor clock must be phase synchronous to another clock.

Vgg 9, 35, 60 |

SYSTEM GROUND: are the ground pins (all must be connected to system ground).

Vee 30, 62 I

SYSTEM POWER: +5V power supply pins. A 0.1pF capacitor between pins 60 and 62 is recommended.

NOTES:

1. READY is an open-collector signal and should be pulled inactive with an appropriate resistor (6200 at 10MHz and 12.5MHz, 4700 at

16MHz, 390Q at 20MHz, 270Q at 25MHz).
2. HLDA is only Low if HOLD is inactive (Low).

3. All unused inputs should be pulled to their inactive state with pull up/down resistors.

Functional Description

Introduction

The Intersil 80C286 microprocessor is a static CMOS ver-
sion of the NMOS 80286 microprocessor. The 80C286 is an
advanced, high-performance microprocessor with specially
optimized capabilities for multiple user and multi-tasking sys-
tems. Depending on the application, the 80C286's perfor-
mance is up to nineteen times faster than the standard
5MHz 8086's, while providing complete upward software
compatibility with Intersil 80C86 and 80C88 CPU family.

The 80C286 operates in two modes: 80C286 real address
mode and protected virtual address mode. Both modes exe-
cute a superset of the 80C86 and 80C88 instruction set.

In 80C286 real address mode programs use real addresses
with up to one megabyte of address space. Programs use vir-
tual addresses in protected virtual address mode, also called
protected mode. In protected mode, the 80C286 CPU automat-
ically maps 1 gigabyte of virtual addresses per task into a 16
megabyte real address space. This mode also provides mem-
ory protection to isolate the operating system and ensure pri-
vacy of each tasks' programs and data. Both modes provide
the same base instruction set, registers and addressing modes.

The Functional Description describes the following: Static oper-
ation, the base 80C286 architecture common fo both modes,
80C286 real address mode, and finally, protected mode.

Static Operation

The 80C286 is comprised of completely static circuitry.
Internal registers, counters, and laiches are static and
require no refresh as with dynamic circuit design. This elim-
inates the minimum operating frequency restriction typically
placed on microprocessors. The CMOS 80C286 can oper-
ate from DC to the specified upper frequency limit. The
clock to the processor may be stopped at any point (either
phase one or phase two of the processor clock cycle) and
held there indefinitely. There is, however, a significant
decrease in power requirement if the clock is stopped in
phase two of the processor clock cycle. Details on the clock
relationships will be discussed in the Bus Operation sec-
tion. The ability to stop the clock to the processor is espe-
cially useful for system debug or power critical applications.

80C286

The 80C286 can be single-stepped using only the CPU
clock. This state can be maintained as long as necessary.
Single step clock information allows simple interface circuitry
to provide critical information for system debug.

Static design also allows very low frequency operation
(down to DC). In a power critical situation, this can provide
low power operation since 80C286 power dissipation is
directly related to operating frequency. As the system fre-
quency is reduced, so is the operating power until, ulti-
mately, with the clock stopped in phase two of the processor
clock cycle, the 80C286 power requirement is the standby
current (5mA maximum).

80C286 Base Architecture

The 80C86, 80C88, and 80C286 CPU family all contain the
same basic set of registers, instructions, and addressing

modes. The 80C286 processor is upwardly compatible with
the 80C86 and 80C88 CPU's.

Register Set

The 80C286 base architecture has fifteen registers as
shown in Figure 1. These registers are grouped into the fol-
lowing four categories.

GENERAL REGISTERS: Eight 16-bit general purpose regis-
ters used to contain arithmetic and logical operands. Four of
these (AX, BX, CX and DX) can be used either in their
entirety as 16-bit words or split info pairs of separate 8-bit
registers.

SEGMENT REGISTERS: Four 16-bit special purpose regis-
ters select, at any given time, the segments of memory that
are immediately addressable for code, stack and data. (For
usage, refer to Memory Organization.)

BASE AND INDEX REGISTERS: Four of the general pur-
pose registers may also be used to determine offset
addresses of operands in memory. These registers may
contain base addresses or indexes to particular locations
within a segment. The addressing mode determines the spe-
cific registers used for operand address calculations.

STATUS AND CONTROL REGISTERS: Three 16-bit spe-
cial purpose registers record or control certain aspects of the
80C286 processor state. These include the Flags register
and Machine Status Word register shown in Figure 2, and
the Instruction Pointer, which contains the offset address of
the next sequential instruction to be executed.

16-BIT SPECIAL
REGISTER REGISTER
NAME FUNCTIONS
7 07 0
BYTE AX| AH AL | MULTIPLY/DIVIDE
ADDRESSABLE | px| o o 1/0 INSTRUCTIONS
(8BIT
REGISTER 1
GISTER) x| cn cL |\ LOOPISHIFT/REPEAT
SHOWN))
BX| BH BL
\ BASE REGISTERS
BP
sl
\ INDEX REGISTERS
DI
SP f STACK POINTER
GENERAL
REGISTERS
15 0
cs CODE SEGMENT
SELECTOR
DATA SEGMENT
DS SELECTOR
ss STACK SEGMENT
SELECTOR
EXTRA SEGMENT
ES SELECTOR
SEGMENT
REGISTERS
15 0
F FLAGS
- INSTRUCTION
POINTER
MACHINE
mMsw STATUS WORD

STATUS AND CONTROL
REGISTERS

FIGURE 1. REGISTER SET

Flags Word Description

The Flags word (Flags) records specific characteristics of
the result of logical and arithmetic instructions (bits 0, 2, 4, 6,
7 and 11) and controls the operation of the 80C286 within a
given operating mode (bits 8 and 9). Flags is a 16-bit regis-
ter. The function of the flag bits is given in Table 1.

80C286

STATUS FLAGS:
CARRY
PARITY

AUXILIARY CARRY
ZERO

SIGN

15

14

OVERFLOW

13

e L .

FLAGS: - NT l

15

I0PL lOFIDFlIFlTFlSFIZF- - -

A

|

CONTROL FLAGS:
TRAP FLAG
INTERRUPT ENABLE
DIRECTION FLAG

SPECIAL FIELDS:
1/0 PRIVILEGE LEVEL
NESTED TASK FLAG

3 2 1 0

v | SN = [e [or [< |

I |
- RESERVED TASK SWITCH

PROCESSOR EXTENSION EMULATED
MONITOR PROCESSOR EXTENSION

PROTECTION ENABLE

FIGURE 2. STATUS AND CONTROL REGISTER BIT FUNCTIONS

TABLE 1. FLAGS WORD BIT FUNCTIONS

BIT POSITION NAME FUNCTION

0 CF Carry Flag - Set on high-order bit carry or borrow; cleared otherwise.

2 PF Parity Flag - Set if low-order 8 bits of result contain an even number of 1 bits; cleared otherwise.

4 AF Set on carry from or borrow to the low order four bits of AL; cleared otherwise.

6 ZF Zero Flag - Set if result is zero; cleared otherwise.

7 Sk Sign Flag - Set equal to high-order bit of result (0 if positive, 1 if negative).

11 OF Overflow Flag - Set if result is a too-large positive number or a too-small negative number (excluding
sign-bit) to fit in destination operand; cleared otherwise.

8 TF Single Step Flag - Once set, a single step interrupt occurs after the next instruction executes. TF is
cleared by the single step interrupt.

9 IF Interrupt-Enable Flag - When set, maskable interrupts will cause the CPU to transfer control to an inter-
rupt vector specified location.

10 DF Direction Flag - Causes string insfructions to auto decrement the appropriate index registers when set.

Clearing DF causes auto increment.

80C286

Instruction Set

The instruction set is divided into seven categories: data

TABLE 2B. ARITHMETIC INSTRUCTIONS

. - ADDITION
transfer, arithmetic, string manipulation, shift/rotate/logical,
high level, processor control and control transfer instruc- ADD Add byte or word
tions. These categories are summarized in Table 2. ADC Add byte or word with carry
An 80C286 instruction can referencg zero, one, or two_ oper- INC Increment byte or word by 1
ands; where an operand may reside in a register, in the - —
instruction itself, or in memory. Zero-operand instructions AAA ASCll adjust for addition
(e.g. NOP and HLT) are usually one byte long. One-operand DAA Decimal adjust for addition
instructions (e.g. INC and DEC) are usually two bytes long
but some are encoded in only one byte. One-operand SUBTRACTION
instructions may reference a register or memory location. SUB Subtract byte or word
Two-oplerand |ns‘gruct_|ons permit the following six types of SBB Subtract byte or word with borrow
instruction operations:
DEC Decrement byte or ward by 1
» Register to Register * Memory to Memory Y Y
* Memory to Register * Register to Memory NEG Negate byte or word
* Immediate to Register * Immediate to Memory CMP Compare byte or word
Two-operand instructions (e.g. MOV and ADD) are usually AAS ASCII adjust for sublraction
threg o six bytes ang. Memory to_ memory qperations_ are DAS Decimal adjust for subtraction
provided by a special class of siring instructions requiring
one to three bytes. For detailed instruction formats and |MULTIPLICATION
encodings refer to the instruction set summary at the end of MUL Multiply byte or word unsigned
this document. -
IMUL Integer multiply byte or word
TABLE 2A. DATA TRANSFER INSTRUCTIONS AAM ASCIl adjust for multiply
GENERAL PURPOSE DIVISION
MOV Move byte or word DIV Divide byte or word unsigned
PUSH Push word onto stack IDIV Integer divide byte or word
POP Pop word off stack AAD ASCII adjust for division
PUSHA Push all registers on stack CBW Convert byte to word
POPA Pop all registers from stack CWD Convert word to doubleword
XCHG Exchange byte or word
XLAT Translate byte
TABLE 2C. STRING INSTRUCTIONS
INPUT/QUTPUT
N Input byte o word MOVS Move byte or word string
ouT Output bys or word INS Input bytes or word string
ADDRESS OBJECT ouTs Output bytes or word string
EA Load offoctive addross CMPS Compare byte or word string
DS Load pointer using DS SCAS Scan byte or word string
= Load pointer using ES LODS Load byte or word string
FLAG TRANSFER STOS Stare byte or word string
LAHF Load AH register from flags REP Repeal
SAHF Store AH register in flags REPE/REPZ Repeat while equal/zero
PUSHE Push flags onto stack REPNE/REPNZ | Repeat while not equal/not zero
POPF Pop flags off stack

80C286

TABLE 2D. SHIFT/ROTATE LOGICAL INSTRUCTIONS

TABLE 2F. PROCESSOR CONTROL INSTRUCTIONS

LOGICALS FLAG OPERATIONS
NOT “Not” byte or word STC Set carry flag
AND “And” byte or word CLC Clear carry flag
OR “Inclusive or” byte or word CMC Complement carry flag
XOR “Exclusive or” byte or word STD Set direction flag
TEST “Test” byte or word CLD Clear direction flag
SHIFTS STI Set interrupt enable flag
SHL/SAL Shift logical/arithmetic left byte or word CLI Clear interrupt enable flag
SHR Shift logical right byte or word EXTERNAL SYNCHRONIZATION
SAR Shift arithmetic right byte or word HLT Halt until interrupt or reset
ROTATES WAIT Wait for TEST pin active
ROL Rotate left byte or word ESC Escape to extension processor
ROR Ratate right byte or word LOCK Lock bus during next instruction
RCL Rotate through carry left byte or word NO OPERATION
RCR Rotate through carry right byte or word NOP No operation
EXECUTION ENVIRONMENT CONTROL
TABLE 2E. HIGH LEVEL INSTRUCTIONS LMSW Load machine status word
ENTER Format stack for procedure entry SMSW Store machine status word
LEAVE Restore stack for procedure exit
BOUND Detects values outside prescribed range
TABLE 2G. PROGRAM TRANSFER INSTRUCTIONS
CONDITIONAL TRANSFERS UNCONDITIONAL TRANSFERS
JA/JNBE Jump if above/not below nor equal CALL Call procedure
JAE/JNB Jump if above or equal/not below RET Return from procedure
JB/JNAE Jump if below/not above nor equal JMP Jump
JBE/JNA Jump if below or equal/not above
JC Jump if carry ITERATION CONTROLS
JENZ Jump if equal/zero LOOP Loop
JG/INLE Jump if greater/not less nor equal
JGE/JNL Jump if greater or equal/not less LOOPE/LOOPZ Loop if equal/zero
JL/IINGE Jump if less/not greater nor equal LOOPNE/LOOPNZ Loop if not equal/not zero
JLE/NG Jump if less or equal/not greater JCXZ Jump if register CX =0
JNC Jump if not carry
JNE/INZ Jump if not equal/not zero INTERRUPTS
JNO Jump if not overflow INT Interrupt
JNPAPO Jump if not parity/parity odd
JNS Jump if not sign INTO Interrupt if overflow
JO Jump if overflow IRET Interrupt return
JPIJPE Jump if parity/parity even
Js Jump if sign

10

80C286

Memory Organization

Memory is organized as sets of variable-length segments. Each
segment is a linear contiguous sequence of up to 64K (216) 8-
bit bytes. Memory is addressed using a two-component
address (a pointer) that consists of a 16-bit segment selector
and a 16-bit offset. The segment selector indicates the desired
segment in memory. The offset component indicates the
desired byte address within the segment. (See Figure 3).

All instructions that address operands in memory must spec-
ify the segment and the offset. For speed and compact
instruction encoding, segment selectors are usually stored in
the high speed segment registers. An instruction need spec-
ify only the desired segment register and offset in order to
address a memory operand.

~
Ly

LAY
(49

~
n

POINTER
| SEGMENT | OFFSET |
31 1615 0
Y Y OPERAND SELECTED
‘ SELECTED SEGMENT
X MEMORY &

FIGURE 3. TWO COMPONENT ADDRESS

Most instructions need not explicitly specify which segment
register is used. The correct segment register is automati-
cally chosen according fo the rules of Table 3. These rules
follow the way programs are written (see Figure 4) as inde-
pendent modules that require areas for code and data, a
stack, and access to external data areas.

Special segment override instruction prefixes allow the
implicit segment register selection rules to be overridden for
special cases. The stack, data and exira segments may
coincide for simple programs. To access operands not resid-
ing in one of the four immediately available segments, a full
32-bit pointer or a new segment selector must be loaded.

TABLE 3. SEGMENT REGISTER SELECTION RULES

MEMORY | SEGMENT
REFERENCE | REGISTER IMPLICIT SEGMENT
NEEDED USED SELECTION RULE
Instructions Code (CS) | Automatic with instruction prefetch
Stack Stack (SS) | All stack pushes and pops. Any
memory reference which uses BP
as a base register.
Local Data Data (DS) | All data references except when
relative to stack or string destination
External Extra (ES) | Alternate data segment and
(Global) Data destination of string operation

Addressing Modes

The 80C286 provides a total of eight addressing modes for
instructions to specify operands. Two addressing modes are
provided for instructions that operate on register or immedi-
ate operands:

REGISTER OPERAND MODE: The operand is located in
one of the 8 or 16-bit general registers.

IMMEDIATE OPERAND MODE: The operand is included in
the instruction.

Six modes are provided to specify the location of an operand in
a memory segment. A memory operand address consisis of
two 16-bit components: segment selector and offset. The seg-
ment selector is supplied by a segment register either implicitly
chosen by the addressing mode or explicitly chosen by a seg-
ment override prefix. The offset is calculated by summing any
combination of the following three address elements:

the displacement (an 8 or 16-bit immediate value contained
in the instruction)

the base (contents of either the BX or BP base registers)

the index (contents of either the Sl or DI index registers)

F= == =19
|]
CODE
MODULE A
DATA
1 1
I]
CODE | cPY
MODULE B “
DATA CODE
I i DATA
1 1
STACK
PROCESS
STACK EXTRA
SEGMENT
| X REGISTERS
1 1
PROCESS
DATA
BLOCK 1
I]
1 1
PROCESS
DATA
BLOCK 2
I]
| SRR |
MEMORY
FIGURE 4. SEGMENTED MEMORY HELPS STRUCTURE
SOFTWARE

Any carry out from the 16-bit addition is ignored. Eight-bit
displacements are sign extended to 16-bit values.

11

80C286

Combinations of these three address elements define the six
memory addressing modes, described below.

DIRECT MODE: The operand's offset is contained in the
instruction as an 8 or 16-bit displacement element.

REGISTER INDIRECT MODE: The operand's offset is in
one of the registers Sl, DI, BX or BP.

BASED MODE: The operand's offset is the sum of an 8 or
16-bit displacement and the contents of a base register (BX
or BP).

INDEXED MODE: The operand's offset is the sum of an 8 or 16-
bit displacement and the contents of an index register (Sl or DI).

BASED INDEXED MODE: The operand's offset is the sum
of the contents of a base register and an index register.

BASED INDEXED MODE WITH DISPLACEMENT: The
operand's offset is the sum of a base register's contents, an
index register's contents, and an 8 or 16-bit displacement.

Data Types
The 80C286 directly supports the following data types:

A signed binary numeric value contained in an 8-
bit byte or a 16-bit word. All operations assume a
2's complement representation. Signed 32 and
64-bit integers are supported using the 80287
Numeric Data Processor.

Integer:

Ordinal: An unsigned binary numeric value contained in an
8-bit byte or 16-bit word.

Pointer: A 32-bit quantity, composed of a segment selec-
tor component and an offset component. Each
component is a 16-bit word.

String: A contiguous sequence of bytes or words. A sfring
may contain from 1 byte to 64K bytes.

ASCIl: A byte representation of alphanumeric and control
characters using the ASCII standard of character
representation.

BCD: A byte (unpacked) representation of the decimal
digits 0-9.

Packed A byte (packed) representation of two decimal

BCD: digits 0-9 storing one digit in each nibble of the
byte.

Floating A signed 32, 64 or 80-bit real number representa-

Point: tion. (Floating point operands are supported using

the 80287 Numeric Processor extension).

Figure 5 graphically represents the data types supported by
the 80C286.

7 0
SIGNED
BYTE
SIGNBIT
MAGNITUDE
7 0
UNSIGNED
BYTE
CMsB
MAGNITUDE
151t g7 0 o
SIGNED [TTTTTTTTTTTTI
WORD
SIGN BIT /|- MSB
MAGNITUDE
SIGNED +3 12 + 0
bouBre 31 1615 0
WORD ||“|“|||“|”|||“||“||”|”||
(NOTE)
SIGNBIT —!|L MSB |
MAGNITUDE
SIGNED +7 +6 +5 +4 +3 +2 +1 0
GNED 63 4847 3231 1615 0
wee L I T T T T T
(NOTE)
SIGN BIT —| L MSB |
MAGNITUDE
+1 0
15 0
UNSIGNED
WORD | [| [|
|- MsB |
MAGNITUDE
enary 7 Vo 7 Y o7 0 o
CODED oo [TTTITTTTPTTITTT
DECIMAL
(BCD) BCD BCD BCD
DIGIT N DIGIT1 DIGITO
7 N 7 1 o7 0 o
ASCH m cee |||||||||||||||||
Ascll AsCll AsCll
CHARACTERy CHARACTER; CHARACTER,
7 N g 7 *1 o7 0
PACKED s
BCD
L1 L |
MOST LEAST
SIGNIFICANT DIGIT SIGNIFICANT DIGIT
ms N o ms *1 o750 o
STRING see |'“|”'|'”|”'|

BYTE/WORD N BYTE/WORD 1 BYTE/WORD 0
31 3 +1 45195 +1 0

POINTER |III|III|III|III|III|III|III|III|
|

SELECTOR OFFSET
79 +9 +8 +7 +6 +5 +#4 +3 +2 4+
FLOATING

Sy N

EXPONENT MAGNITUDE

FIGURE 5. 80C286 SUPPORTED DATA TYPES

NOTE: Supported by 80C286/80C287 Numeric Data Processor
Configuration

0

0
|
|

12

80C286

TABLE 4. INTERRUPT VECTOR ASSIGNMENTS

DOES RETURN ADDRESS
INTERRUPT RELATED POINT TO INSTRUCTION
FUNCTION NUMBER INSTRUCTIONS CAUSING EXCEPTION?
Divide Error Exception 0 DIV, IDIV Yes
Single Step Interrupt 1 All
NMI Interrupt 2 INT 2 or NMI Pin
Breakpoint Interrupt 3 INT 3
INTO Detected Overflow Exception 4 INTO No
BOUND Range Exceeded Exception s BOUND Yes
Invalid Opcode Exception 6 Any Undefined Opcode Yes
Processor Extension Not Available Exception 7 ESC or WAIT Yes
Reserved - Do Not Use 8-15
Processor Extension Error Interrupt 16 ESC or WAIT
Reserved 17-31
User Defined 32 -255

/0 Space

The /O space consists of 64K 8-bit ports, 32K 16-bit ports, or
a combination of the two. I/O instructions address the I/O
space with either an 8-bit port address, specified in the
instruction, or a 16-bit port address in the DX register. 8-bit
port addresses are zero extended such that A{5-Ag are LOW.
I/O port addresses 00F8(H) through 00FF(H) are reserved.

Interrupts

An interrupt transfers execution to a new program location.
The old program address (CS:IP) and machine state (Flags)
are saved on the stack to allow resumption of the interrupted
program. Interrupts fall into three classes: hardware initiated,
INT instructions, and instruction exceptions. Hardware initi-
ated interrupts occur in response to an external input and
are classified as non-maskable or maskable. Programs may
cause an interrupt with an INT instruction. Instruction excep-
tions occur when an unusual condition which prevents fur-
ther instruction processing is detected while attempting to
execute an insfruction. The return address from an excep-
tion will always point to the instruction causing the exception
and include any leading instruction prefixes.

A table containing up to 256 pointers defines the proper
interrupt service routine for each interrupt. Interrupts 0-31,
some of which are used for instruction exceptions, are
reserved. For each interrupt, an 8-bit vector must be sup-
plied to the 80C286 which identifies the appropriate table
entry. Exceptions supply the interrupt vector internally. INT
instructions contain or imply the vector and allow access to
all 256 interrupts. Maskable hardware initiated interrupis
supply the 8-bit vector to the CPU during an interrupt
acknowledge bus sequence. Nonmaskable hardware inter-
rupts use a predefined internally supplied vector.

Maskable Interrupt (INTR)

The 80C286 provides a maskable hardware interrupt request
pin, INTR. Software enables this input by setting the interrupt
flag bit (IF) in the flag word. All 224 user-defined interrupt
sources can share this input, yet they can retain separate
interrupt handlers. An 8-bit vector read by the CPU during the
interrupt acknowledge sequence (discussed in System Inter-
face section) identifies the source of the interrupt.

The processor automatically disables further maskable inter-
rupts internally by resetting the IF as part of the response to
an interrupt or exception. The saved flag word will reflect the
enable status of the processor prior to the interrupt. Until the
flag word is restored to the flag register, the interrupt flag will
be zero unless specifically set. The interrupt return instruc-
tion includes restoring the flag word, thereby restoring the
original status of IF.

Non-Maskable Interrupt Request (NMI)

A non-maskable interrupt input (NMI) is also provided. NMI
has higher priority than INTR. A typical use of NMI would be
to activate a power failure routine. The activation of this input
causes an interrupt with an internally supplied vector value
of 2. No external interrupt acknowledge sequence is per-
formed.

While executing the NMI servicing procedure, the 80C286
will service neither further NMI requests, INTR requests, nor
the processor extension segment overrun interrupt until an
interrupt return (IRET) instruction is executed or the CPU is
reset. If NMI occurs while currently servicing an NMI, iis
presence will be saved for servicing after executing the first
IRET instruction. IF is cleared at the beginning of an NMI
interrupt to inhibit INTR interrupts.

13

80C286

Single Step Interrupt

The 80C286 has an internal interrupt that allows programs to
execute one instruction at a time. It is called the single step
interrupt and is controlled by the single step flag bit (TF) in the
flag word. Once this bit is set, an internal single step interrupt
will occur after the next instruction has been executed. The
interrupt clears the TF bit and uses an internally supplied vec-
tor of 1. The IRET instruction is used to set the TF bit and
transfer control to the next instruction to be single stepped.

Interrupt Priorities

When simultaneous interrupt requests occur, they are pro-
cessed in a fixed order as shown in Table 5. Interrupt pro-
cessing involves saving the flags, return address, and
setting CS:IP to point at the first instruction of the interrupt
handler. If another enabled interrupt should occur, it is pro-
cessed before the next instruction of the current interrupt
handler is executed. The last interrupt processed is therefore
the first one serviced.

TABLE 5. INTERRUPT PROCESSING ORDER

ORDER INTERRUPT
1 Instruction Exception
2 Single Step
3 NMI
4 Processor Extension Segment Overrun
5 INTR
6 INT Instruction

Initialization and Processor Reset

Processor initialization or start up is accomplished by driving
the RESET input pin HIGH. RESET forces the 80C286 to
terminate all execution and local bus activity. No instruction
or bus activity will occur as long as RESET is active. After
RESET becomes inactive, and an internal processing inter-
val elapses, the 80C286 begins execution in real address
mode with the instruction at physical location FFFFFO(H).
RESET also sets some registers to predefined values as
shown in Table 6.

TABLE 6. 80C286 INITIAL REGISTER STATE AFTER RESET

Flag Word 0002(H)
Machine Status Word FFFO(H)
Instruction Pointer FFFO(H)
Code Segment FO0O(H)
Data Segment 0000(H)
Extra Segment 0000(H)
Stack Segment 0000(H)

HOLD must not be active during the time from the leading
edge of the initial RESET to 34 CLKs after the trailing edge
of the initial RESET of an 80C286 system.

Machine Status Word Description

The machine status word (MSW) records when a task switch
takes place and controls the operating mode of the 80C286.
It is a 16-bit register of which the lower four bits are used.
One bit places the CPU into protected mode, while the other
three bits, as shown in Table 7, control the processor exten-
sion interface. After RESET, this register contains FFFO(H)
which places the 80C286 in 80C286 real address mode.

TABLE 7. MSW BIT FUNCTIONS

BIT
POSITION | NAME

0 PE

FUNCTION

Protected mode enable places the
80C286 into protected mode and cannot
be cleared except by RESET.

Monitor processor extension allows WAIT
instructions to cause a processor exten-
sion not present exception (number 7).

Emulate processor extension causes a
processor extension not present excep-
tion (number 7) on ESC instructions to al-
low emulating a processor extension.

Task switched indicates the next instruc-
tion using a processor extension will
cause exception 7, allowing software to
test whether the current processor exten-
sion context belongs to the current task.

The LMSW and SMSW instructions can load and store the
MSW in real address mode. The recommended use of TS,
EM, and MP is shown in Table 8.

Halt

The HLT instruction stops program execution and prevents
the CPU from using the local bus until restarted. Either NMI,
INTR with IF = 1, or RESET will force the 80C286 out of halt.
If interrupted, the saved CS:IP will point to the next instruc-
tion after the HLT.

14

80C286

TABLE 8. RECOMMENDED MSW ENCODINGS FOR PROCESSOR EXTENSION CONTROL

INSTRUCTION
CAUSING
TS MP EM RECOMMENDED USE EXCEPTION 7
0 0 0 Initial encoding after RESET. 80C286 operation is identical to 80C86/88. None
0 0 1 No processor extension is available. Software will emulate its function. ESC
1 0 1 No processor extension is available. Software will emulate its function. The ESC
current processor extension context may belong to another task.
0 1 0 A processor extension exists. None
1 1 0 A processor extension exists. The current processor extension context may ESGC or WAIT
belong to another task. The exception 7 on WAIT allows software to test for
an error pending from a previous processor extension operation.
TABLE 9. REAL ADDRESS MODE ADDRESSING INTERRUPTS
INTERRUPT RETURN ADDRESS
FUNCTION NUMBER RELATED INSTRUCTIONS BEFORE INSTRUCTION
Interrupt table limit too small exception 8 INT vector is not within table limit Yes
Processor extension segment overrun 9 ESC with memory operand extending beyond offset No
interrupt FFFF(H)
Segment overrun exception 13 Word memory reference with offset = FFFF(H) or an Yes
attempt to execute past the end of a segment

80C286 Real Address Mode

The 80C286 executes a fully upward-compatible superset of
the 80C86 instruction set in real address mode. In real
address mode the 80C286 is object code compatible with
80C86 and 80C88 software. The real address mode archi-
tecture (registers and addressing modes) is exactly as
described in the 80C286 Base Architecture section of this
Functional Description.

Memory Size

Physical memory is a contiguous array of up to 1,048,576
bytes (one megabyie) addressed by pins Ag through Aqg
and BHE. Aq through Az3 should be ignored.

Memory Addressing

In real address mode physical memory is a contiguous array
of up to 1,048,576 bytes (one megabyte) addressed by pin
Ag through A9 and BHE. Address bits Asg-Asz may not
always be zero in real mode. Asg-Az3 should not be used by
the system while the 80C286 is operating in Real Mode.

The selector portion of a pointer is interpreted as the upper
16-bits of a 20-bit segment address. The lower four bits of
the 20-bit segment address are always zero. Segment
addresses, therefore, begin on multiples of 16 bytes. See
Figure 6 for a graphic representation of address information.

All segments in real address mode are 64K bytes in size and
may be read, written, or executed. An exception or interrupt
can occur if data operands or insfructions attempt to wrap
around the end of a segment (e.g. a word with its low order
byte at offset FFFF(H) and its high order byte at offset
0000(H)). If, in real address mode, the information contained

in a segment does not use the full 64K bytes, the unused
end of the segment may be overlaid by another segment to
reduce physical memory requirements.

15 0
OFFSET
0000 OFFSET ADDRESS
L ra
15 0
[SEGMENT | 0000| SEGMENT
SELECTOR ADDRESS
ADDER
19 0

20-BIT PHYSICAL
MEMORY ADDRESS

FIGURE 6. 80C286 REAL ADDRESS MODE ADDRESS
CALCULATION

15

80C286

Reserved Memory Locations

The 80C286 reserves two fixed areas of memory in real
address mode (see Figure 7); system initialization area and
interrupt table area. Locations from addresses FFFFO(H)
through FFFFF(H) are reserved for system initialization. Initial
execution begins at location FFFFO(H). Locations 00000(H)
through 003FF(H) are reserved for interrupt vectors.

RESETBOOTSTRAP | F' /'
PROGRAM JUMP FEFFOH
INTERRUPT POINTER | 3FF ™
FOR VECTOR 255 3FCH
= : ¥
7H
INTERRUPT POINTER
FOR VECTOR 1 4H
INTERRUPT POINTER | 3H
FOR VECTOR 0 OH

INITIAL CS:IP VALUE IS FO00:FFFO

FIGURE 7. 80C286 REAL ADDRESS MODE INITIALLY
RESERVED MEMORY LOCATIONS

Interrupts

Table 9 shows the interrupt vectors reserved for exceptions
and interrupts which indicate an addressing error. The
exceptions leave the CPU in the state existing before
attempting to execute the failing instruction (except for
PUSH, POP, PUSHA, or POPA). Refer to the next section
on protected mode initialization for a discussion on excep-
tion 8.

Protected Mode Initialization

To prepare the 80C286 for protected mode, the LIDT
instruction is used to load the 24-bit interrupt table base and
16-bit limit for the protected mode interrupt table. This
instruction can also set a base and limit for the interrupt vec-
tor table in real address mode. After reset, the interrupt table
base is initialized to 000000(H) and its size set to 03FF(H).
These values are compatible with 80C86 and 80C88 soft-
ware. LIDT should only be executed in preparation for pro-
tected mode.

Shutdown

Shutdown occurs when a severe error is detected that prevents
further instruction processing by the CPU. Shutdown and halt
are externally signalled via a halt bus operation. They can be
distinguished by Aq HIGH for halt and Aq LOW for shutdown. In
real address mode, shutdown can occur under two conditions:

Exceptions 8 or 13 happen and the IDT limit does not
include the interrupt vector.

A CALL INT or PUSH instruction attempts to wrap around
the stack segment when SP is not even.

An NMI input can bring the CPU out of shutdown if the IDT
limit is at least 000F(H) and SP is greater than 0005(H), oth-
erwise shutdown can only be exited via the RESET inpuit.

16

80C286

Protected Virtual Address Mode

The 80C286 executes a fully upward-compatible superset of
the 80C86 instruction set in protected virtual address mode
(protected mode). Protected mode also provides memory
management and protection mechanisms and associated
instructions.

The 80C286 enters protected virtual address mode from real
address mode by setting the PE (Protection Enable) bit of
the machine status word with the Load Machine Status Word
(LMSW) instruction. Protected mode offers extended physi-
cal and virtual memory address space, memory protection
mechanisms, and new operations to support operating sys-
tems and virtual memory.

All registers, instructions, and addressing modes described
in the 80C286 Base Architecture section of this Functional
Description remain the same. Programs for the 80C86,
80C88, and real address mode 80C286 can be run in pro-
tected mode; however, embedded constants for segment
selectors are different.

Memory Size

The protected mode 80C286 provides a 1 gigabyte virtual
address space per task mapped into a 16 megabyte physical
address space defined by the address pins As3z-Ag and
BHE. The virtual address space may be larger than the
physical address space since any use of an address that
does not map to a physical memory location will cause a
restartable exception.

CcPU
31 1615 0
POINTER SELECTOFII OFFSET
1
PHYSICAL MEMORY
~o ~o
e o
MEMORY
PHYSICAL > SEGMENT
ADDRESS _OPERAND _
ADDER
s
=
=]
SEGMENT BASE ~SEGNENT | gEu
ADDRESS | DESCRIPTOR | 3 & 3
23 0 A Har
(]
o
~ ~

FIGURE 8. PROTECTED MODE MEMORY ADDRESSING

Memory Addressing

As in real address mode, protected mode uses 32-bit point-
ers, consisting of 16-bit selector and offset components. The
selector, however, specifies an index into a memory resident
table rather than the upper 16-bits of a real memory address.
The 24-bit base address of the desired segment is obtained

from the tables in memory. The 16-bit offset is added to the
segment base address to form the physical address as
shown in Figure 8. The tables are automatically referenced
by the CPU whenever a segment register is loaded with a
selector. All 80C286 instructions which load a segment reg-
ister will reference the memory based tables without addi-
tional software. The memory based tables contain 8 byte
values called descriptors.

Descriptors

Descriptors define the use of memory. Special types of
descriptors also define new functions for transfer of control
and task switching. The 80C286 has segment descriptors for
code, stack and data segments, and system control descrip-
tors for special system data segments and control transfer
operations. Descriptor accesses are performed as locked
bus operations to assure descriptor integrity in multi-proces-
sor systems.

Code and Data Segment Descriptors (S = 1)

Besides segment base addresses, code and data descriptors
contain other segment attributes including segment size (1 to
64K bytes), access rights (read only, read/write, execute only,
and execute/read), and presence in memory (for virtual mem-
ory systems) (See Table 10). Any segment usage violating a
segment attribute indicated by the segment descriptor will pre-
vent the memory cycle and cause an exception or interrupt.

7 07 0
1
+7 RESERVED # +6
P|DPL|S|TYPE| A
ACCESS +5 | [1 BASE 23-16 +4
RIGHTS BYTE +3 BASE 15.¢ 2
]
“ L||'.'||TI 15-0 0
15 8 7 0

+# MUST BE SET TO 0 FOR COMPATIBILITY WITH FUTURE UPGRADES
FIGURE 9. CODE OR DATA SEGMENT DESCRIPTOR

Code and data (including stack data) are stored in two types
of segments: code segments and data segments. Both types
are identified and defined by segment descriptors (S = 1).
Code segments are identified by the executable (E) bit set to
1 in the descriptor access rights byte. The access rights byte
of both code and data segment descriptor types have three
fields in common: present (P) bit, Descriptor Privilege Level
(DPL), and accessed (A) bit. If P = 0, any attempted use of
this segment will cause a not-present exception. DPL speci-
fies the privilege level of the segment descriptor. DPL con-
trols when the descriptor may be used by a task (refer to
privilege discussion below). The A bit shows whether the
segment has been previously accessed for usage profiling, a
necessity for virtual memory systems. The CPU will always
set this bit when accessing the descriptor.

17

80C286

TABLE 10. CODE AND DATA SEGMENT DESCRIPTOR FORMATS - ACCESS RIGHTS BYTE DEFINITION

POgII'ITION NAME FUNCTION
7 Present (P) =1 Segment is mapped into physical memory.
=0 No mapping to physical memory exits, base and limit are not used.
6-5 Descriptor Privilege Segment privilege attribute used in privilege tests.
Level (DPL)
4 Segment Descriptor (S) [S =1 Code or Data (includes stacks) segment descriptor
S=0 System Segment Descriptor or Gate Descriptor
3 Executable (E) E=0 Data segment descriptor type is: \
2 Expansion Direction ED =0 |Expand up segment, offsets must be < limit.
(ED) ED =1 |Expand down segment, offsets must be > limit. S :fSD:aTj Eef?)em
1 Writable (W) W=0 |Datasegment may not be written into.
W= Data segment may be written into. J
Type 3 Executable (E) E=1 Code Segment Descriptar type is:
Defir::i;?c:g 2 Conforming (C) C= Code segment may_unly be executed when CPL =
DPL and CPL remains unchanged. e If Code Segment
1 Readable (R) =0 |Code segment may not be read. (S=1E=1)
=1 Code segment may be read.
0 Accessed (A) =0 Segment has not been accessed.

Segment selector has been loaded into segment register or used by selector
test instructions.

18

80C286

Data segments (S = 1, E = 0) may be either read-only or read-
write as controlled by the W bit of the access rights byte.
Read-only (W = 0) data segmenis may not be written into.
Data segments may grow in two directions, as determined by
the Expansion Direction (ED) bit: upwards (ED = 0) for data
segments, and downwards (ED = 1) for a segment containing
a stack. The limit field for a data segment descriptor is inter-
preted differently depending on the ED bit (see Table 10).

A code segment (S = 1, E = 1) may be execute-only or exe-
cute/read as determined by the Readable (R) bit. Code seg-
ments may never be written into and execute-only code
segments (R = 0) may not be read. A code segment may
also have an attribute called conforming (C). A conforming
code segment may be shared by programs that execute at
different privilege levels. The DPL of a conforming code seg-
ment defines the range of privilege levels at which the seg-
ment may be executed (refer to privilege discussion below).
The limit field identifies the last byte of a code segment.

System Segment Descriptors (S =0, Type = 1-3)

In addition to code and data segment descriptors, the pro-
tected mode 80C286 defines System Segment Descriptors.
These descriptors define special system data segments
which contain a table of descriptors (Local Descriptor Table
Descriptor) or segments which contain the execution state of
a task (Task State Segment Descriptor).

Table 11 gives the formats for the special system data seg-
ment descriptors. The descriptors contain a 24-bit base
address of the segment and a 16-bit limit. The access byte
defines the type of descriptor, its state and privilege level.
The descriptor contents are valid and the segment is in
physical memory if P = 1. If P = 0, the segment is not valid.
The DPL field is only used in Task State Segment descrip-
tors and indicates the privilege level at which the descriptor
may be used (see Privilege). Since the Local Descriptor
Table descriptor may only be used by a special privileged
instruction, the DPL field is not used. Bit 4 of the access byte
is 0 to indicate that it is a system control descriptor. The type
field specifies the descriptor type as indicated in Table 11.

7 07 0
T
+ RESERVED # +6
=P DII'-'L 0 I'I'YIPEI BASE 23- 16 +
+3 B“S'Tw-u 2
“ L|M|TI.,5_° 0
15 8 7 0

+# MUST BE SET TO 0 FOR COMPATIBILITY WITH FUTURE UPGRADES

FIGURE 10. SYSTEM SEGMENT DESCRIPTOR

TABLE 11. SYSTEM SEGMENT DESCRIPTOR FORMAT FIELDS

NAME VALUE DESCRIPTION
TYPE 1 Available Task State Segment (TSS)
2 Local Descriptor Table
3 Busy Task State Segment (TSS)
P 0 Descriptor contents are not valid
1 Descriptor contents are valid
DPL 0-3 Descriptor Privilege Level
BASE 24-Bit Base Address of special system data
Number |segment in real memory
LIMIT 16-Bit Offset of last byte in segment
Number

Gate Descriptors (S =0, Type = 4-7)

Gates are used to control access fo entry points within the
target code segment. The gate descriptors are call gates,
task gates, interrupt gates and trap gates. Gates provide a
level of indirection between the source and destination of the
control transfer. This indirection allows the CPU to automati-
cally perform protection checks and control entry point of the
destination. Call gates are used to change privilege levels
(see Privilege), task gates are used to perform a task switch,
and interrupt and frap gates are used to specify interrupt ser-
vice routines. The interrupt gate disables interrupts (resets
IF) while the trap gate does not.

Table 12 shows the format of the gate descriptors. The
descriptor contains a destination pointer that points to the
descriptor of the target segment and the entry point offset.
The destination selector in an interrupt gate, trap gate, and
call gate must refer to a code segment descriptor. These gate
descriptors contain the entry point to prevent a program from
constructing and using an illegal entry point. Task gates may
only refer to a task state segment. Since task gates invoke a
task switch, the destination offset is not used in the task gate.

Exception 13 is generated when the gate is used if a destina-
tion selector does not refer to the correct descriptor type. The
word count field is used in the call gate descriptor to indicate
the number of parameters (0-31 words) to be automatically
copied from the caller’s stack to the stack of the called routine
when a control transfer changes privilege levels. The word
count field is not used by any other gate descriptor.

The access byte format is the same for all descriptors. P = 1
indicates that the gate contents are valid. P = 0 indicates the
contents are not valid and causes exception 11 if refer-
enced. DPL is the descriptor privilege level and specifies
when this descriptor may be used by a task (refer to privilege
discussion below). Bit 4 must equal 0 to indicate a system
control descriptor. The type field specifies the descriptor type
as indicated in Table 12.

19

80C286

Segment Descriptor Cache Registers

A segment descriptor cache register is assigned to each of
the four segment registers (CS, SS, DS, ES). Segment
descriptors are automatically loaded (cached) into a seg-
ment descriptor cache register (Figure 12) whenever the
associated segment register is loaded with a selector.

Only segment descriptors may be loaded info segment
descriptor cache registers. Once loaded, all references to
that segment of memory use the cached descriptor informa-
tion instead of reaccessing the descriptor. The descriptor
cache registers are not visible to programs. No instructions

PROGRAM VISIBLE
SEGMENT SELECTORS
cs
Ds
sS
ES

15 0

SEGMENT REGISTERS
(LOADED BY PROGRAM)

PROGRAM INVISIBLE

I I
I I
exist to store their contents. They only change when aseg- 1 ACCESS SEGMENT PHYSICAL 1
ment register is loaded 1 RIGHTS BASE ADDRESS SEGMENT SIZE |
) 1 1
7 07 0 X X
+7 RESERVED # +6 1 1
I I
P|DPL|0| TYPE [X X X|WORD COUNT 1 1
+5|||||||||| a-0|* " "
+3 DESTINATION SELECTOR 15 o | XIX +2 147 40 39 16 15 01
: SEGMENT DESCRIPTOR CACHE REGISTERS :
+1 DESTINATION OFFSET 15-¢ 0 . (AUTOMATICALLY LOADED BY CPU) .
15 87 0 L i i 4
% MUST BE SET TO 0 FOR COMPATIBILITY WITH FUTURE UPGRADES FIGURE 12. DESCRIPTOR CACHE REGISTERS
FIGURE 11. GATE DESCRIPTOR SELECTOR
INDEX |TI|FIPL|
TABLE 12. GATE DESCRIPTOR FORMAT FIELD Y [l
15 8 7 210
NAME | VALUE DESCRIPTION BITS NAME FUNCTION
TYPE 4 Call Gate 1-0 |Requested Privilege Level | Indicates Selector Privilege
5 Task Gate (RPL) Level Desired
2 Table Indicator (T1) Tl = 0 Use Global Descrip-
6 Interrupt Gate tor Table (GDT)
7 Trap Gate Tl =1 Use Local Descriptor
Table (LDT)
P 0 Descriptor Gontents ot valid
escriptor wontents are not vl 15-3 | Index Select Descriptor Entry In
1 Descriptor Cantents are valid Table
DPL 0-3 |Descriptor Privilege Level FIGURE 13. SELECTOR FIELDS
WORD 0-31 | Number of words to copy from callers .
COUNT stack to called procedures stack. Only Local and Global Descriptor Tables
used with call gate. Two tables of descriptors, called descriptor tables, contain all
DESTINATION | 16-Bit | Selector to the target code segment descrl.ptors. accessible by a task at any gven time. A descriptor
SELECTOR | Selector | (call, interrupt or selector Trap Gate). table is a linear array of up to 8192 descriptors. The upper 13
Selector to the target task state seg- bits of the selector value are an index into a descriptor table.
ment (Task Gate). Each table has a 24-bit base register to locate the descriptor
- — table in physical memory and a 16-bit limit register that confine
-) escriptor access to the defined limits of the table as shown in
DEng:III:\ISAET_ll_ON E;;SBel}[E«::g point within the target code seg d i to the defined limits of the tabl h
Figure 14. A restartable exception (13) will occur if an attempt is
. made to reference a descriptor outside the table limits.
Selector Fields

A protected mode selector has three fields: descriptor entry
index, local or global descriptor table indicator (T}), and selec-
tor privilege (RPL) as shown in Figure 13. These fields select
one of two memory based tables of descriptors, select the
appropriate fable entry and allow high-speed testing of the
selector's privilege atiribute (refer to privilege discussion
below).

One table, called the Global Descriptor table (GDT), con-
tains descriptors available to all tasks. The other table,
called the Local Descriptor Table (LDT), contains descriptors
that can be private o a task. Each task may have its own pri-
vate LDT. The GDT may contain all descriptor types except
interrupt and frap descriptors. The LDT may contain only
segment, task gate, and call gate descriptors. A segment
cannot be accessed by a task if its segment descriptor does
not exist in either descriptor table at the time of access.

20

80C286

CPU X MEMORY %
15 0 .
| .
03 | GOTLIMIT -< . GDT
|
GDT BASE |
24-BIT PHYS AD =
15 0 |
LDT i
DESCR | - - ->
SELECTOR LDT,
\
N 0 5
i . - e | CURRENT
I 23 LDT LIMIT | LDT
I I
| LDT BASE i J
i | 24-BITPHYS AD [*
: : Lo,
, PROGRAM INVISIBLE | e
| (AUTOMATICALLY | 2>
| LOADED | 0 BTy
| FROMLDTDESCR | : g =g
| WITHNGDT) | gda
oo e e e e e e omm e o E
e 7
FIGURE 14. LOCAL AND GLOBAL DESCRIPTOR TABLE
DEFINITION

The LGDT and LLDT instructions load the base and limit of
the global and local descriptor tables. LGDT and LLDT are
privileged, i.e. they may only be executed by trusted pro-
grams operating at level 0. The LGDT instruction loads a six
byte field containing the 16-bit table limit and 24-bit physical
base address of the Global Descriptor Table as shown in
Figure 15. The LDT instruction loads a selector which refers
to a Local Descriptor Table descriptor containing the base
address and limit for an LDT, as shown in Table 11.

7 07 0
+5 RESERVED + BASE 23.1¢ +4
3 BASE 15-0 +2
“ LIMIT 15- 0

15 8 : 7 0

+# MUST BE SET TO 0 FOR COMPATIBILITY WITH FUTURE UPGRADES

FIGURE 15. GLOBAL DESCRIPTOR TABLE AND INTERRUPT
DESCRIPTOR TABLE DATA TYPE

Interrupt Descriptor Table

The protected mode 80C286 has a third descriptor table,
called the Interrupt Descriptor Table (IDT) (see Figure 186),
used to define up to 256 interrupts. It may contain only task
gates, interrupt gates and trap gates. The IDT (Interrupt
Descriptor Table) has a 24-bit physical base and 16-bit limit
register in the CPU. The privileged LIDT instruction loads
these registers with a six byte value of identical form to that
of the LGDT instruction (see Figure 16 and Protected Mode
Initialization).

References to IDT entries are made via INT instructions, exter-
nal interrupt vectors, or exceptions. The IDT must be at least
256 bytes in size to allocate space for all reserved interrupts.

X MEMORY &
GATEFOR ||
INTERRUPT #n
GATE FOR
INTERRUPT #n-1 | | |\ coipT
. DESCRIPTOR
cPu 9 : " TABLE
15 0 GATE FOR (IpT)
INTERRUPT #1
IDT LIMIT | H 0]
GATE FOR Z>9
INTERRUPT #0 Qou
IDT BASE - w=g
SE9
23 0 z=4
~ 2

FIGURE 16. INTERRUPT DESCRIPTOR TABLE DEFINITION

Privilege

The 80C286 has a four-level hierarchical privilege system
which controls the use of privileged instructions and access
to descriptors (and their associated segments) within a task.
Four-level privilege, as shown in Figure 17, is an extension
of the users/supervisor mode commonly found in minicom-
puters. The privilege levels are numbered 0 through 3. Level
0 is the most privileged level. Privilege levels provide protec-
tion within a task. (Tasks are isolated by providing private
LDT's for each task.) Operating system routines, interrupt
handlers, and other system software can be included and
protected within the virtual address space of each task using
the four levels of privilege. Each task in the system has a
separate stack for each of its privilege levels.

Tasks, descriptors, and selectors have a privilege level
attribute that determines whether the descriptor may be
used. Task privilege affects the use of instructions and
descriptors. Descriptor and selector privilege only affect
access to the descriptor.

CPU
ENFORCED

SOFTWARE
INTERFACES

APPLICATIONS

HIGH SPEED
OPERATING
SYSTEM

INTERFACE

NOTE: PL becomes numerically lower as privilege level increases.
FIGURE 17. HIERARCHICAL PRIVILEGE LEVELS

21

80C286

Task Privilege

A task always executes at one of the four privilege levels.
The task privilege level at any specific instant is called the
Current Privilege Level (CPL) and is defined by the lower
two bits of the CS register. CPL cannot change during exe-
cution in a single code segment. A task's CPL may only be
changed by control transfers through gate descriptors to a
new code segment (See Control Transfer). Tasks begin exe-
cuting at the CPL value specified by the code segment
selector within TSS when the task is initiated via a task
switch operation (See Figure 18). A task executing at Level O
can access all data segments defined in the GDT and the
task's LDT and is considered the most trusted level. A task
executing a Level 3 has the most restricted access to data
and is considered the least trusted level.

Descriptor Privilege

Descriptor privilege is specified by the Descriptor Privilege
Level (DPL) field of the descriptor access byte. DPL specifies
the least trusted task privilege level (CPL) at which a task may
access the descriptor. Descriptors with DPL = 0 are the most
protected. Only tasks executing at privilege level 0 (CPL = 0)
may access them. Descriptors with DPL = 3 are the least pro-
tected (i.e. have the least restricted access) since tasks can
access them when CPL =0, 1, 2, or 3). This rule applies to all
descriptors, except LDT descriptors.

Selector Privilege

Selector privilege is specified by the Requested Privilege
Level (RPL) field in the least significant two bits of a selector.
Selector RPL may establish a less trusted privilege level
than the current privilege level for the use of a selector. This
level is called the task's effective privilege level (EPL). RPL
can only reduce the scope of a task's access to data with
this selector. A task's effective privilege is the numeric maxi-
mum of RPL and CPL. A selector with RPL = 0 imposes no
additional restriction on its use while a selector with RPL = 3
can only refer to segments at privilege Level 3 regardless of
the task's CPL. RPL is generally used to verify that pointer

parameters passed to a more ftrusted procedure are not
allowed to use data at a more privileged level than the caller
(refer to pointer testing instructions).

Descriptor Access and Privilege Validation

Determining the ability of a task to access a segment
involves the type of segment to be accessed, the instruction
used, the type of descriptor used and CPL, RPL, and DPL.
The two basic types of segment accesses are control frans-
fer (selectors loaded info CS) and data (selectors loaded into
DS, ES or SS).

Data Segment Access

Instructions that load selectors into DS and ES must refer to
a data segment descriptor or readable code segment
descriptor. The CPL of the task and the RPL of the selector
must be the same as or more privileged (numerically equal
to or lower than) than the descriptor DPL. In general, a task
can only access data segments at the same or less privi-
leged levels than the CPL or RPL (whichever is numerically
higher) to prevent a program from accessing data it cannot
be trusted to use.

An exception to the rule is a readable conforming code seg-
ment. This type of code segment can be read from any privi-
lege level.

If the privilege checks fail (e.g. DPL is numerically less than
the maximum of CPL and RPL) or an incorrect type of
descriptor is referenced (e.g. gate descriptor or execute only
code segment) exception 13 occurs. If the segment is not
present, exception 11 is generated.

Instructions that load selectors into SS must refer to data
segment descriptors for writable data segments. The
descriptor privilege (DPL) and RPL must equal CPL. All
other descriptor types or a privilege level violation will cause
exception 13. A not present fault causes exception 12.

TABLE 13. DESCRIPTOR TYPES USED FOR CONTROL TRANSFER

DESCRIPTOR DESCRIPTOR
CONTROL TRANSFER TYPES OPERATION TYPES REFERENCED TABLE
Intersegment within the same privilege levels JMP, CALL, RET, IRET (Note 4) | Code Segment GDT/LDT
Intersegment to the same or higher privilege level interrupt | CALL Call Gate GDT/LDT
ithin task h CPL
wiihintasicmay chiange Interrupt Instruction, Exception | Trap or Interrupt Gate | IDT
External Interrupt
Intersegment to a lower privilege level (changes task CPL) | RET, IRET (Note 4) Code Segment GDT/LDT
Task Switch CALL, JMP Task State Segment | GDT
CALL, JMP Task Gate GDT/LDT
IRET (Note 5) Task Gate IDT
Interrupt Instruction, Exception
External Interrupt

NOTES:
4. NT (Nested Task bit of flag word) = 0
5. NT (Nested Task bit of flag word) = 1

22

80C286

Control Transfer

Four types of control transfer can occur when a selector is
loaded into CS by a contfrol transfer operation (see Table
13). Each transfer type can only occur if the operation which
loaded the selector references the correct descriptor type.
Any violation of these descriptor usage rules (e.g. JMP
through a call gate or RET to a Task State Segment) will
cause exception 13.

The ability to reference a descriptor for control transfer is
also subject to rules of privilege. A CALL or JUMP instruction
may only reference a code segment descriptor with DPL
equal to the task CPL or a conforming segment with DPL of
equal or greater privilege than CPL. The RPL of the selector
used to reference the code descriptor must have as much
privilege as CPL.

RET and IRET instructions may only reference code seg-
ment descriptors with descriptor privilege equal to or less
privileged than the task CPL. The selector loaded into CS is
the return address from the stack. After the return, the selec-
tor RPL is the task's new CPL. If CPL changes, the old stack
pointer is popped after the return address.

When a JMP or CALL references a Task State Segment
descriptor, the descriptor DPL must be the same or less priv-
ileged than the task's CPL. Reference to a valid Task State
Segment descriptor causes a task swiich (see Task Switch
Operation). Reference to a Task State Segment descriptor
at a more privileged level than the task's CPL generates
exception 13.

When an instruction or interrupt references a gate descrip-
tor, the gate DPL must have the same or less privilege than
the task CPL. If DPL is at a more privileged level than CPL,
exception 13 occurs. If the destination selector contained in
the gate references a code segment descriptor, the code
segment descriptor DPL must be the same or more privi-
leged than the task CPL. If not, Exception 13 is issued. After
the control transfer, the code segment descriptors DPL is the
task's new CPL. If the destination selector in the gate refer-
ences a task state segment, a task switch is automatically
performed (see Task Switch Operation).

The privilege rules on control transfer require:

* JMP or CALL direct to a code segment (code segment
descriptor) can only be a conforming segment with DPL of
equal or greater privilege than CPL or a non-conforming
segment at the same privilege level.

Interrupts within the task, or calls that may change privilege
levels, can only transfer control through a gate at the same
or a less privileged level than CPL to a code segment at the
same or more privileged level than CPL.

Return instructions that don't switch tasks can only return
control to a code segment at the same or less privileged
level.

Task switch can be performed by a call, jump or interrupt
which references either a task gate or task state segment at
the same or less privileged level.

Privilege Level Changes

Any control transfer that changes CPL within the task,
causes a change of stacks as part of the operation. Initial
values of SS:SP for privilege levels 0, 1, and 2 are kept in
the task state segment (refer to Task Switch Operation).
During a JMP or CALL control transfer, the new stack pointer
is loaded into the SS and SP registers and the previous
stack pointer is pushed onto the new stack.

When returning to the original privilege level, its stack is
restored as part of the RET or IRET insfruction operation.
For subroutine calls that pass parameters on the stack and
cross privilege levels, a fixed number of words, as specified
in the gate, are copied from the previous stack to the current
stack. The inter-segment RET instruction with a stack adjust-
ment value will correctly restore the previous stack pointer
upon return.

Protection

The 80C286 includes mechanisms to protect critical instruc-
tions that effect the CPU execution state (e.g. HLT) and
code or data segments from improper usage. These protec-
tion mechanisms are grouped into three forms:

* Restricted usage of segmenis (e.g. no write allowed to
read-only data segments). The only segments available for
use are defined by descriptors in the Local Descriptor Table
(LDT) and Global Descriptor Table (GDT).

Restricted access to segments via the rules of privilege and
descriptor usage.

Privileged instructions or operations that may only be exe-
cuted at certain privilege levels as determined by the CPL
and /O Privilege Level (IOPL). The IOPL is defined by bits
14 and 13 of the flag word.

These checks are performed for all instructions and can be
split into three categories: segment load checks (Table 14),
operand reference checks (Table 15), and privileged instruc-
tion checks (Table 16). Any violation of the rules shown will
result in an exception. A not-present exception related to the
stack segment causes exception 12.

TABLE 14. SEGMENT REGISTER LOAD CHECKS

EXCEPTION
ERROR DESCRIPTION NUMBER
Descriptor table limit exceeded 13
Segment descriptor not-present 11ori12
Privilege rules violated 13
Invalid descriptor/segment type segment register 13

load:
- Read only data segment load to SS
- Special control descriptor load to DS, ES, SS
- Execute only Segment load to DS, ES, SS
- Data segment load to CS
- Read/Execute code segment load SS

23

80C286

TABLE 15. OPERAND REFERENCE CHECKS

EXCEPTION
ERROR DESCRIPTION NUMBER
Write into code segment 13
Read from execute-only code segment 13
Write to read-only data segment 13
Segment limit exceeded (See Note) 120r13

NOTE: Carry out in offset calculations is ignored.
TABLE 16. PRIVILEGED INSTRUCTION CHECKS

EXCEPTION
ERROR DESCRIPTION NUMBER
CPL = 0 when executing the following instructions: 13
LIDT, LLDT, LGDT, LTR, LMSW, CTS, HLT
CPT > I0PL when executing the following 13
instructions:
INS, IN, OUTS, OUT, STI, CLI, LOCK

The IRET and POPF instructions do not perform some of
their defined functions if CPL is not of sufficient privilege
(numerically small enough). Precisely these are:

* The IF bit is not changed if CPL is greater than I0PL.

* The IOPL field of the flag word is not changed if CPL is
greater than 0.

No exceptions or other indication are given when these con-
ditions occur.

Exceptions

The 80C286 detects several types of exceptions and inter-
rupts in protected mode (see Table 17). Most are restartable
after the exceptional condition is removed. Interrupt handlers
for most exceptions can read an error code, pushed on the
stack after the return address, that identifies the selector
involved (0 if none). The return address normally points to
the failing instruction including all leading prefixes. For a pro-
cessor extension segment overrun exception, the return

address will not point at the ESC instruction that caused the
exception; however, the processor extension registers may
contain the address of the failing instruction.

These exceptions indicate a violation to privilege rules or
usage rules has occurred. Restart is generally not attempted
under those conditions.

All these checks are performed for all instructions and can
be split into three categories: segment load checks (Table
14), operand reference checks (Table 15), and privileged
instruction checks (Table 16). Any violation of the rules
shown will result in an exception. A not-present exception
causes exception 11 or 12 and is restartable.

SPECIAL OPERATIONS

Task Switch Operation

The 80C286 provides a built-in task switch operation which
saves the entire 80C286 execution state (registers, address
space, and a link to the previous task), loads a new execution
state, and commences execution in the new fask. Like gates,
the task switch operation is invoked by executing an inter-seg-
ment JMP or CALL instruction which refers to a Task State
Segment (TSS) or task gate descriptor in the GDT or LDT. An
INT instruction, exception, or external interrupt may also
invoke the task switch operation by selecting a task gate
descriptor in the associated IDT descriptor entry.

The TSS descriptor points at a segment (see Figure 18) con-
taining the entire 80C286 execution state while a task gate
descriptor contains a TSS selector. The limit field of the
descriptor must be greater than 002B(H).

Each task must have a TSS associated with it. The current
TSS is identified by a special register in the 80C286 called
the Task Register (TR). This register contains a selector
referring to the task state segment descriptor that defines
the current TSS. A hidden base and limit register associated
with TR are loaded whenever TR is loaded with a new selec-
tor. The IRET instruction is used to return control to the task
that called the current task or was interrupted. Bit 14 in the
flag register is called the Nested Task (NT) bit. It controls the

TABLE 17. PROTECTED MODE EXCEPTIONS

RETURN ADDRESS
INTERRUPT AT FALLING ALWAYS ERROR CODE
VECTOR FUNCTION INSTRUCTION? | RESTARTABLE? ON STACK?
8 Double exception detected Yes No (Note 7) Yes
9 Processor extension segment overrun No No (Note 7) No
10 Invalid task state segment Yes Yes Yes
11 Segment not present Yes Yes Yes
12 Stack segment overrun or stack segment not present Yes Yes (Note 6) Yes
13 General protection Yes No (Note 7) Yes
NOTES:

6. When a PUSHA or POPA instruction attempts to wrap around the stack segment, the machine state after the exception will not be restartable
because stack segment wrap around is not permitted. This condition is identified by the value of the saved SP being either 0000(H), 0001(H),

FFFE(H), or FFFF(H).

7. These exceptions indicate a violation to privilege rules or usage rules has occurred. Restart is generally not attempted under those conditions.

24

80C286

function of the IRET instruction. If NT = 0, the IRET instruc-
tion performs the regular current task by popping values off
the stack; when NT = 1, IRET performs a task swiich opera-
tion back to the previous task.

When a CALL, JMP, or INT instruction initiates a task switch,
the old (except for case of JMP) and new TSS will be
marked busy and the back link field of the new TSS set to
the old TSS selector. The NT bit of the new task is set by
CALL or INT initiated task switches. An interrupt that does
not cause a task switch will clear NT. NT may also be set or
cleared by POPF or IRET instructions.

The task state segment is marked busy by changing the
descriptor type field from Type 1 to Type 3. Use of a selec-
tor that references a busy task state segment causes
Exception 13.

Processor Extension Context Switching

The context of a processor extension is not changed by the
task swiich operation. A processor extension context need
only be changed when a different task aftempis fo use the
processor extension (which still contains the context of a pre-
vious task). The 80C286 detects the first use of a processor
extension after a task switch by causing the processor exten-
sion not present exception (7). The interrupt handler may then
decide whether a context change is necessary.

Whenever the 80C286 swilches tasks, it sets the Task
Switched (TS) bit of the MSW. TS indicates that a proces-
sor extension context may belong to a different task than
the current one. The processor extension not present
exception (7) will occur when attempting to execute an
ESC or WAIT instruction if TS = 1 and a processor exten-
sion is present (MP = 1 in MSW).

Pointer Testing Instructions

The 80C286 provides several instructions to speed pointer
testing and consistency checks for maintaining system integ-
rity (see Table 18). These instructions use the memory man-
agement hardware to verify that a selector value refers to an

appropriate segment without risking an exception. A condition
flag (ZF) indicates whether use of the selector or segment will
cause an exception.

Double Fault and Shutdown

If two separate exceptions are detected during a single
instruction execution, the 80C286 performs the double fault
exception (8). If an exception occurs during processing of
the double fault exception, the 80C286 will enter shutdown.
During shutdown no further instructions or exceptions are
processed. Either NMI (CPU remains in protected mode) or
RESET (CPU exits protected mode) can force the 80C286
out of shutdown. Shutdown is externally signalled via a
HALT bus operation with A1 LOW.

Protected Mode Initialization

The 80C286 initially executes in real address mode after
RESET. To allow initialization code to be placed at the top of
physical memory. Asz-o0 will be HIGH when the 80C286
performs memory references relative to the CS register until
CS is changed. Ap3-og will be zero for references to the DS,
ES, or SS segments. Changing CS in real address mode will
force Aps-o0 LOW whenever CS is used again. The initial
CS:IP value of FOO0:FFFO provides 64K bytes of code space
for initialization code without changing CS.

Protected mode operation requires several registers to be
initialized. The GDT and IDT base registers must refer to a
valid GDT and IDT. After executing the LMSW instruction to
set PE, the 80C286 must immediately execute an infraseg-
ment JMP instruction to clear the instruction queue of
instructions decoded in real address mode.

To force the 80C286 CPU registers to maich the initial pro-
tected mode state assumed by software, execute a JMP
instruction with a selector referring to the initial TSS used in
the system. This will load the task register, local descriptor
table register, segment registers and initial general register
state. The TR should point at a valid TSS since any task
switch operation involves saving the current task state.

TABLE 18. 80C286 POINTER TEST INSTRUCTIONS

INSTRUCTION OPERANDS FUNCTION
ARPL Selector, Adjust Requested Privilege Level: adjusts the RPL of the selector to the numeric maximum of
Register current selector RPL value and the RPL value in the register. Set zero flag if selector RPL was
changed by ARPL.
VERR Selector VERIfy for Read: sets the zero flag if the segment referred to by the selector can be read.
VERW Selector VERify for Write: sets the zero flag if the segment referred to by the selector can be written.
LSL Register, Load Segment Limit: reads the segment limit into the register if privilege rules and descriptor type
Selector allow. Set zero flag if successful.
LAR Register, Load Access Rights: reads the descriptor access rights byte into the register if privilege rules al-
Selector low. Set zero flag if successful.

25

80C286

~ ~
~ n
CPU
RESERVED TYPE DESCRIPTION
TASK REGISTER |
P|D[o|TYPE 1 An available task state segment.
TR == g;gﬁz"l‘:‘_r P] BASE 23.16 May be used as the destination
. 15_ e 0_ . DESCRIPTOR BASE 15 o of a task switch operation.
TPROGRAM INVISIBLE ! | 1 3 | Abusy task state segment. Can-
: 15 0 : LIMIT 45 I not be used as the destination of
I I [! a task switch.
' LMIT | | n !
1 1 !
' B B R --
. BASE .
" " o w
RS PR - BYTE
15 0 | oFFSET
TASK LDT SELECTOR 42
DS SELECTOR a0 P DESCRIPTION
SS SELECTOR 38 1 |Base and Limit fields are valid.
CS SELECTOR 36 - -
0 |Segment is not present in mem-
ES SELECTOR 34 ory, Base and Limit are not de-
DI 32 fined.
Sl 30
BP 28| CURRENT
> TASK
SP 26| STATE
BX 24
TASK DX 22
STATE
————
SEGMENT CX 20
AX 18
FLAG WORD 16
IP (ENTRY POINT) 14
SS FOR CPL 2 12}
SP FOR CPL 2 10
SSFORCPL1 8 INITIAL
¢ STACKS
SP FOR CPL 1 6 [FORCPLO. 1 2
SSFORCPLO 4
SPFORCPLO 2
BACK LINK SELECTORTO TSS| 0 ’
(] ‘?]d

FIGURE 18. TASK STATE SEGMENT AND TSS REGISTERS

System Interface

The 80C286 system interface appears in two forms: a local
bus and a system bus. The local bus consisis of address,
data, status, and contirol signals at the pins of the CPU. A sys-
tem bus is any buffered version of the local bus. A system bus
may also differ from the local bus in terms of coding of status
and control lines and/or timing and loading of signals.

Bus Interface Signals and Timing

The 80C286 microsystems local bus interfaces the 80C286 to
local memory and I/O components. The interface has 24
address lines, 16 data lines, and 8 status and control signals.

The 80C286 CPU, 82C284 clock generator, 82C288 bus
controller, 82289 bus arbiter, 82C86H/87H transceivers, and
82(C82/83H laiches provide a buffered and decoded system
bus interface. The 82C284 generates the system clock and

26

80C286

synchronizes READY and RESET. The 82C288 converis
bus operation status encoded by the 80C286 into command
and bus control signals. The 82289 bus arbiter generates
Multibus™ bus arbitration signals. These componenis can
provide the critical timing required for most system bus inter-
faces including the Multibus.

Bus Hold Circuitry

To avoid high current conditions caused by floating inputs to
CMOS devices, and to eliminate the need for pull-up/down
resistors, “bus-hold” circuitry has been used on the 80C286
pins 4-6, 36-51 and 66-68 (See Figure 19A and 19B). The
circuit shown in Figure 19A will maintain the last valid logic
state if no driving source is present (i.e. an unconnected pin
or a driving source which goes to a high impedance state).
The circuit shown in Figure 19B will maintain a high imped-
ance logic one state if no driving source is present. To over-
drive the “bus-hold” circuits, an external driver must be
capable of sinking or sourcing approximately 400 microamps
at valid input voltage levels. Since this “bus-hold” circuitry is
active and not a ‘“resistive” type element, the associated
power supply current is negligible, and power dissipation is
significantly reduced when compared to the use of passive
pull-up resistors.

N BOND | EXTERNAL
| PAD PIN
- -
OUTPUT & '
DRIVER '
1 1
] 1
I 1
INPUT .
DRIVER 4, o'l = s INPUT
PROTECTION |-
CIRCUITRY

FIGURE 19A. BUS HOLD CIRCUITRY, PINS 36-51, 66, 67

OuTPUT
DRIVER
NG ~ BOND | EXTERNAL
PAD [PIN

INPUT

DRIVER -t INPUT

—< * PROTECTION |
CIRCUITRY

FIGURE 19B. BUS HOLD CIRCUITRY, PINS 4-6, 68

Physical Memory and l/O Interface

A maximum of 16 megabytes of physical memory can be
addressed in protected mode. One megabyte can be
addressed in real address mode. Memory is accessible as
bytes or words. Words consist of any two consecutive bytes
addressed with the least significant byte stored in the lowest

address. Byte transfers occur on either half of the 16-bit local
data bus. Even bytes are accessed over D7_ while odd bytes
are transferred over Dq5_g. Even addressed words are frans-
ferred over D45_g in one bus cycle, while odd addressed word
require two bus operations. The first transfers data on Dy5_g,
and the second fransfers data on D7_g. Both byte data trans-
fers occur automatically, fransparent to software.

Two bus signals, Ag and BHE, control transfers over the
lower and upper halves of the data bus. Even address byte
transfers are indicated by Ag LOW and BHE HIGH. Odd
address byte transfers are indicated by Ag HIGH and BHE
LOW. Both Ag and BHE are LOW for even address word
transfers.

The I/O address space contains 64K addresses in both
modes. The /O space is accessible as either bytes or words,
as is memory. Byte wide peripheral devices may be attached
to either the upper or lower byte of the data bus. Byte-wide I/0
devices attached to the upper data byte (D15_g) are accessed
with odd I/O addresses. Devices on the lower data byte are
accessed with even I/O addresses. An interrupt controller
such as Intersil's 82C59A must be connected to the lower
data byte (D7_q) for proper return of the interrupt vector.

Bus Operation

The 80C286 uses a double frequency system clock (CLK
input) to control bus timing. All signals on the local bus are
measured relative to the system CLK input. The CPU divides
the system clock by 2 to produce the internal processor
clock, which determines bus state. Each processor clock is
composed of two system clock cycles named phase 1 and
phase 2. The 82C284 clock generator output (PCLK) identi-
fies the next phase of the processor clock. (See Figure 20.)

=—— ONE PROCESSOR CLOCK CYCLE —=

«+—ONEBUSTSTATE——>

PHASE 1 PHASE 2
=- OF PROCESSOR* | =- OF PROCESSOR =
CLOCK CYCLE CLOCK CYCLE

- Tk overe |
PCLK / \ /

FIGURE 20. SYSTEM AND PROCESSOR CLOCK RELATION-
SHIPS

Six types of bus operations are supported; memory read,
memory write, I/O read, /0 write, interrupt acknowledge,
and halt/shutdown. Data can be transferred at a maximum
rate of one word per two processor clock cycles.

The 80C286 bus has three basic states: idle (T}), send sta-
tus (Tg), and perform command (T¢). The 80C286 CPU also
has a fourth local bus state called hold (Ty). Ty indicates
that the 80C286 has surrendered control of the local bus to
another bus master in response to a HOLD request.

Each bus state is one processor clock long. Figure 21 shows
the four 80C286 local bus states and allowed transitions.

27

80C286

RESET

HLDA

NEW CYCLE « HLDA

R
LDA « NEW CYCL

READY « NEW CYCLE
NEW CYCLE
HLDA « NEW CYCLE READY
ALWAYS
-
READY « NEW CYCLE

FIGURE 21. 80C286 BUS STATES

Bus States

The idle (T|) state indicates that no data transfers are in
progress or requested. The first active state Tg is signaled
by status line S1 or SO going LOW and identifying phase 1 of
the processor clock. During Tg, the command encoding, the
address, and data (for a write operation) are available on the
80C286 output pins. The 82C288 bus controller decodes the
status signals and generates Multibus compatible read/write
command and local transceiver control signals.

After Tg, the perform command (T) state is entered. Mem-
ory or /O devices respond to the bus operation during T,
either transferring read data to the CPU or accepting write
data. T states may be repeated as often as necessary to
ensure sufficient time for the memory or /O device to
respond. The READY signal determines whether Tg is
repeated. A repeated T state is called a wait state.

During hold (Ty), the 80C286 will float all address, data, and
status output drivers enabling another bus master to use the
local bus. The 80C286 HOLD input signal is used to place
the 80C286 into the Ty state. The 80C286 HLDA output sig-
nal indicates that the CPU has entered Ty.

Pipelined Addressing

The 80C286 uses a local bus interface with pipelined timing
to allow as much time as possible for data access. Pipelined
timing allows a new bus operation to be initiated every two
processor cycles, while allowing each individual bus opera-
tion to last for three processor cycles.

The timing of the address outputs is pipelined such that the
address of the next bus operation becomes available during
the current bus operation. Or, in other words, the first clock of
the next bus operation is overlapped with the last clock of the
current bus operation. Therefore, address decode and routing
logic can operate in advance of the next bus operation.

External address laiches may hold the address stable for the
entire bus operation, and provide additional AC and DC buff-
ering.

The 80C286 does not maintain the address of the current bus
operation during all T¢ states. Instead, the address for the
next bus operation may be emitted during phase 2 of any T.

The address remains valid during phase 1 of the first T¢ to
guarantee hold time, relative to ALE, for the address lafch
inputs.

Bus Control Signals

The 82C288 bus controller provides contirol signals; address
laich enable (ALE), Read/Write commands, data frans-
mit/receive (DT/R), and data enable (DEN) that control the
address latches, data transceivers, write enable, and output
enable for memory and I/O systems.

The Address Latch Enable (ALE) output determines when
the address may be latched. ALE provides at least one sys-
tem CLK period of address hold time from the end of the pre-
vious bus operation until the address for the next bus
operation appears at the laich outputs. This address hold
time is required to support Multibus and common memory
systems.

The data bus transceivers are controlled by 82C288 outputs
Data Enable (DEN) and Data Transmit/Receive (DT/R). DEN
enables the data transceivers; while DT/R controls trans-
ceiver direction. DEN and DT/R are timed to prevent bus
contention between the bus master, data bus transceivers,
and system data bus transceivers.

Command Timing Controls

Two system timing customization options, command extension
and command delay, are provided on the 80C286 local bus.

Command extension allows additional time for external
devices to respond to a command and is analogous to
inserting wait states on the 80C86. External logic can control
the duration of any bus operation such that the operation is
only as long as necessary. The READY input signal can
extend any bus operation for as long as necessary.

Command delay allows an increase of address or write data
setup time to system bus command active for any bus oper-
ation by delaying when the system bus command becomes
active. Command delay is controlled by the 82C288 CMDLY
input. After Tg, the bus controller samples CMDLY at each
failing edge of CLK. If CMDLY is HIGH, the 82C288 will not
activate the command signal. When CMDLY is LOW, the
82C288 will activate the command signal. After the com-
mand becomes active, the CMDLY input is not sampled.

When a command is delayed, the available response time
from command active to return read data or accept write
data is less. To customize system bus timing, an address
decoder can determine which bus operations require delay-
ing the command. The CMDLY input does not affect the tim-
ing of ALE, DEN or DT/R.

Figure 23 illustrates four uses of CMDLY. Example 1 shows
delaying the read command two system CLKs for cycle N-1
and no delay for cycle N, and example 2 shows delaying the
read command one system CLK for cycle N-1 and one sys-
tem CLK delay for cycle N.

28

80C286

= READ BUS CYCLEN

READBUS CYCLEN+1 ——

-—Tc

-—TS—-|

2

Ts
I 92

Tc—

| | 42

--|-ﬂ—

#1 | 42
L

o1 |
| | L4 &1 b

CLK J

L b1 b

PROC
CLK
< 2PCLK CYCLE/TRANSFER - 2 PCLK CYCLE TRANSFER |
| ~ 25 CL?CK CYCLE ADDRESS/TO DATA vmﬁ
A2z - Ag)((((([VALID ADDR (N) /)«(((/ VALID ADDR (N + 1{ X(«(
SIS =\)l — \/
READY \”\ / =\ ’
O SLCLLRCRTCETEEREEPREERED S ROREE >
VALID READ VALID READ
DATA (N) DATA (N +1)

PIPELINING: VALID ADDRESS (N + 1) AVAILABLE IN LAST PHASE OF BUS CYCLE (N).

FIGURE 22. BASIC BUS CYCLE

29

80C286

READ CYCLEN -1 READ CYCLE N
|"—T5—-'}"—Tc—-| Tc ""—TS—" ""—TC—""
1 I g2 1 | 42 1 | 42 1 (] 1 [g2

exl_ T LT LT ELTL L

PROC
CLK

Ans - Ag VALID fnnn (N-1)/ / X((((/ VALID ADDR N

[XK

[/
My s gy i

Mk/\/ K’f“/

FIGURE 23. CMDLY CONTROLS THE LEADING EDGE OF COMMAND SIGNAL

Bus Cycle Termination the end of phase 1 of each T¢. The state of SRDY is then
broadcast to the bus master and bus controller via the

At maximum transfer rates, the 80C286 bus alternates READY output line.

between the status and command states. The bus status
signals become inactive after Ts so that they may correctly Agynchronous Ready

signal the start of the next bus operation after the completion

of the current cycle. No external indication of T exists on Many systems have devices or subsystems that are asyn-
the 80C286 local bus. The bus master and bus controller ~chronous to the system clock. As a result, their ready out-
enter T¢ directly after Tg and continue executing T cycles — Puts cannot be guaranteed to meet the 82C284 SRDY setup

until terminated by the assertion of READY. and hold time requirements. But the 82C284 asynchronous
ready input (ARDY) is designed to accept such signals. The
READY Operation ARDY input is sampled at the beginning of each T cycle by

82C284 synchronization logic. This provides one system
CLK cycle time to resolve its value before broadcasting it to
the bus master and bus controller.

The current bus master and 82C288 bus controller terminate
each bus operation simultaneously to achieve maximum bus
operation bandwidth. Both are informed in advance by
READY active (open-collector output from 82C284) which ARDY or ARDYEN must be HIGH at the end of Tg. ARDY
identifies the last T cycle of the current bus operation. The cannot be used to terminate the bus cycle with no wait
bus master and bus confroller must see the same sense of states.

the READY signal, thereby requiring READY to be synchro-
nous to the system clock.

Each ready input of the 82C284 has an enable pin
(SBRDYEN and ARDYEN) to select whether the current bus
Synchronous Ready operation will be terminated by the synchronous or asyn-

chronous ready. Either of the ready inputs may terminate a
The 82C284 clock generator provides READY synchroniza- pus operation. These enable inputs are active low and have
tion from both synchronous and asynchronous sources (see the same timing as their respective ready inputs. Address
Figure 24). The synchronous ready input (SRDY) of the decode logic usually selects whether the current bus opera-
clock generator is sampled with the falling edge of CLK at tjon should be terminated by ARDY or SRDY.

30

80C286

Data Bus Control

Figures 25, 26, and 27 show how the DT/R, DEN, data bus,
and address signals operate for different combinations of
read, write, and idle bus operations. DT/R goes active
(LOW) for a read operation. DT/R remains HIGH before, dur-
ing, and between write operations.

The data bus is driven with write data during the second
phase of Tg. The delay in write data timing allows the read
data drivers, from a previous read cycle, sufficient time to
enter three-state OFF before the 80C286 CPU begins driv-
ing the local data bus for write operations. Write data will
always remain valid for one system clock past the last T to
provide sufficient hold time for Multibus or other similar
memory or |/O systems. During write-read or write-idle
sequences the data bus enters a high impedance state dur-
ing the second phase of the processor cycle after the last
Te- In a write-write sequence the data bus does not enter a
high impedance state between T and Tg.

Bus Usage

The 80C286 local bus may be used for several functions:
instruction data fransfers, data transfers by other bus mas-
ters, instruction fetching, processor extension data trans-
fers, interrupt acknowledge, and halt/shutdown. This
section describes local bus activities which have special
signals or requirements. Note that I/O transfers take place
in exactly the same manner as memory transfers (i.e. to the
80C286 the timing, efc. of an I/O transfer is identical to a
memory transfer).

HOLD and HLDA

HOLD and HLDA allow another bus master to gain control of
the local bus by placing the 80C286 bus into the Ty state. The
sequence of events required to pass control between the
80C286 and another local bus master are shown in Figure 28.

In this example, the 80C286 is initially in the Ty state as
signaled by HLDA being active. Upon leaving Ty, as sig-
naled by HLDA going inactive, a write operation is started.
During the write operation another local bus master
requests the local bus from the 80C286 as shown by the
HOLD signal. After completing the write operation, the
80C286 performs one T| bus cycle, to guarantee write data
hold time, then enters Ty as signaled by HLDA going
active.

The CMDLY signal and ARDY ready are used fo start and
stop the write bus command, respectively. Note that SRDY
must be inactive or disabled by SHDYEN to guarantee
ARDY will terminate the cycle.

HOLD must not be active during the time from the leading
edge of RESET until 34 CLKs following the trailing edge of
RESET unless the 80C286 is in the Halt condition. To
ensure that the 80C286 remains in the Halt condition until
the processor Reset operation is complete, no interrupts
should occur after the execution of HLT until 34 CLKs after
the trailing edge of the RESET pulse.

LOCK

The CPU asseris an active lock signal during Interrupt-
Acknowledge cycles, the XCHG instruction, and during
some descriptor accesses. Lock is also asserted when the
LOCK prefix is used. The LOCK prefix may be used with
the following ASM-286 assembly instructions; MOVS, INS
and OUTS. For bus cycles other than Interrupt-Acknowl-
edge cycles, Lock will be active for the first and subsequent
cycles of a series of cycles to be locked. Lock will not be
shown active during the last cycle to be locked. For the
nexi-to-last cycle, Lock will become inactive at the end of
the first T¢ regardless of the number of wait states
inserted. For Interrupt-Acknowledge cycles, Lock will be
active for each cycle, and will become inactive at the end of
the first T for each cycle regardless of the number of wait-
states inserted.

Instruction Fetching

The 80C286 Bus Unit (BU) will fetch instructions ahead of
the current instruction being executed. This activity is called
prefetching. It occurs when the local bus would otherwise be
idle and obeys the following rules:

A prefeich bus operation starts when at least two bytes of
the 6-byte prefeich queue are empty.

The prefetcher normally performs word prefeiches indepen-
dent of the byte alignment of the code segment base in
physical memory.

The prefetcher will perform only a byte code fetch operation
for control fransfers to an instruction beginning on a numeri-
cally odd physical address.

Prefetching stops whenever a control transfer or HLT
instruction is decoded by the IU and placed into the instruc-
tion queue.

In real address mode, the prefetcher may fetch up to 6 bytes
beyond the last control transfer or HLT instruction in a code
segment.

In protected mode, the prefeicher will never cause a seg-
ment overrun exception. The prefetcher stops at the last
physical memory word of the code segment. Exception 13
will occur if the program attempts to execute beyond the last
full instruction in the code segment.

If the last byte of a code segment appears on an even physi-
cal memory address, the prefetcher will read the next physi-
cal byte of memory (perform a word code fetch). The value
of this byte is ignored and any attempt to execute it causes
exception 13.

31

80C286

MEMORY CYCLE N - 1 MEMORY CYCLE N
TS—"'l"— Tc—.-‘-.—Ts—h‘-d— Tc—h-l-n—Tc——‘
1 I 42 1 | g2 1 | g2 1 I 92 91 | 92
w 1L I I rrri I rvrirrr
PROC
CLK
Azz-Ag VALID ADDR /ML VALID ADDR / XKLL | VALID ADDR

soest 7 [T /\ /]

|
saov | \ [/ | W}\ r |

READY (SEENOTES) =\ y (SEE NOTE 9) S\

oy | \ /7 |

(SEE NOTE 10)

NOTES:

8. SRDYEN is active low.

9. If SRDYEN is high, the state of SRDY will not effect READY.
10. ARDYEN is active low.

FIGURE 24. SYNCHRONOUS AND ASYNCHRONOUS READY

32

80C286

READ CYCLE WRITE CYCLE

— T —b-‘-l— Ts —a-|-|— Tc—.-‘-— Ts —.-|-l— Tc —1—‘-— T —=
I o2 31 I g2 31 | 42 1 | 42 1 | 42 31 | 42

e LT L] L]

Az3 - Ag X«(VALID ADDR | Y] VALI}J ADDR

S0+ S1

>
I
\\H‘

Djg-Dp +=mmmmmmmmmmafhmann-n- VALID WRITE PATA {) - -
wADC / < 4/\ } (\ \

MWTC l | / “"_IAT
NS)

DTIR \ \w\—) Cl

FIGURE 25. BACK TO BACK READ-WRITE CYCLE

33

80C286

WRITE CYCLE READ CYCLE

— T —-‘-— Ts —-|-— Tc—l-‘-— Ts —l-|-l— Te ——‘-— T —0-‘

I 92 ¢1 I 42 o1 | g2 o1 | g2 o1 | 42
J—5_| I_ITI %]
VALID VALID WX t
soest VALID
READ DATA
Dys-Dp "= == ==m=mmm== & VALDWRITEDATA /o))) =/= = = = = Lo/

] /7
=
s =

FIGURE 26. BACK TO BACK WRITE-READ CYCLE

WRITE CYCLE N-1 WRITE CYCLE N

- T —-l-— Ts —.-‘-— TC—"""— TS ——‘-— TC —.-‘-— T —-‘

(] 1 | 42 1 | ¢2 1 | 42
Agxs-Ag |). 1/ 4 VALID ADDR N-1 VALID ADDRN |

S0+ 51

Dys-Dp *==mmmmm== = L/ VALID DATA N-1 / X_x VALID DATA N D)D) =/=-
WWTC \

DEN / =\

DTIR (HIGH)

FIGURE 27. BACK TO BACK WRITE-WRITE CYCLE

Processor Extension Transfers

34

80C286

The processor extension interface uses /O port addresses
00F8(H), and 00FC(H) which are part of the I/O port address
range reserved by Intersil. An ESC instruction with Machine
Status Word bits EM = 0 and Tg = 0 will perform I/O bus
operations to one or more of these 1/O port addresses inde-
pendent of the value of IOPL and CPL.

ESC instructions with memory references enable the CPU to
accept PEREQ inputs for processor extension operand
transfers. The CPU will determine the operand starting
address and read/write status of the instruction. For each
operand transfer, two or three bus operations are performed,
one word fransfer with I/O port address 00FA(H) and one or
two bus operations with memory. Three bus operations are
required for each word operand aligned on an odd byte
address.

Interrupt Acknowledge Sequence

Figure 29 illustrates an interrupt acknowledge sequence per-
formed by the 80C286 in response to an INTR input. An
interrupt acknowledge sequence consists of two INTA bus
operations. The first allows a master 82C59A Programmable
Interrupt Controller (PIC) to determine which if any of its
slaves should return the interrupt vector. An eight bit vector
is read on Dg-D7 of the 80C286 during the second INTA bus
operation to select an interrupt handler routine from the
interrupt table.

The Master Cascade Enable (MCE) signal of the 82C288 is
used to enable the cascade address drivers during INTA bus
operations (See Figure 29) onto the local address bus for
distribution to slave interrupt controllers via the system
address bus. The 80C286 emits the LOCK signal (active
LOW) during Tg of the first INTA bus operation. A local bus
“hold” request will not be honored until the end of the second
INTA bus operation.

Three idle processor clocks are provided by the 80C286
between INTA bus operations to allow for the minimum INTA
to INTA time and CAS (cascade address) out delay of the
82C59A. The second INTA bus operation must always have
at least one exira T state added via logic controlling
READY. Ays-A are in three-state OFF until after the first T
state of the second INTA bus operation. This prevents bus
contention between the cascade address drivers and CPU
address drivers. The exira T¢ state allows time for the
80C286 to resume driving the address lines for subsequent
bus operations.

35

80C286

BUS HOLD
BUS HOLD ACKNOWLEDGE WRITE CYCLE
BUS CYCLE TYPE - - ACKNOWLEDGE
TH ‘ TH ‘ TH Ts ‘ Tc ‘ Tc ‘ Tc ‘ T TH ‘
_ o1 le2 To1 o2 lo1 1oz o1 lo2 lo1 le2 lo1 o2 lo1 le2 lo1 o2 o1 |2
CLK

(SEE NOTE 15)

HOLD — \ (SEE NOTE 14)

HLDA C\ /

(SEE NOTE 11)

TeSOO == = = = = = === ==--

Azs - Ag \ (SEE NOTE 12)

WO, = = = = == = = m m mm = o VALD 5SS S S > - = = = = =

CODJINTA
(SEE NOTE 13)

BHE,LOCK == mmmmmmmmmmm e VLD I I = = = = =

(SEE NOTE 16) \

(SEE NOTE 11)

80C286
|
|
—T
]
|]
fh

Dis-Dpemmmmmme e s mmmmmmmmmmm VALID s

o | 77 \ |

=
8 NOT READY NOT READY (SEE NOTE 17)
=] ARDY +
“ | aroven / \ / N\ \Z |
— NOT READY NOT READY \FIEADY
cmpLy | / \\/ |
DELAY ENABLE \ (SEE NOTE 17)
MWTC
\ /
© VoH
& _
g DT/R
| ALE / \
Ts - STATUS CYCLE
Tc - COMMAND CYCLE
NOTES:

11. Status lines are held at a high impedance logic one by the 80C286 during a HOLD state.

12. Address, MO and COD/INTA may start floating during any T depending on when internal 80G286 bus arbiter decides to release bus
to external HOLD. The float starts in ¢2 of Tg.

13. BHE and LOCK may start floating after the end of any T depending on when internal 80C286 bus arbiter decides to release bus to
external HOLD. The float starts in ¢1 of Tg.

14. The minimum HOLD to HLDA time is shown. Maximum is one Ty longer.
15. The earliest HOLD time is shown. It will always allow a subsequent memory cycle if pending is shown.

16. The minimum HOLD to HLDA time is shown. Maximum is a function of the instruction, type of bus cycle and other machine state (i.e.,
Interrupts, Waits, Lock, etc.).

17. Asynchronous ready allows termination of the cycle. Synchronous ready does not signal ready in this example. Synchronous ready state
is ignored after ready is signaled via the asynchronous input.

FIGURE 28. MULTIBUS WRITE TERMINATED BY ASYNCHRONOUS READY WITH BUS HOLD

36

80C286

Local Bus Usage Priorities

The 80C286 local bus is shared among several internal units
and external HOLD requesis. In case of simultaneous
requests, their relative priorities are:

(nghest) Any transfers which assert LOCK either explic-
itly (via the LOCK instruction prefix) or implic-
itly (i.e. some segment descriptor accesses, an
interrupt acknowledge sequence, or an XCHG
with memory).

The second of the two byte bus operations
required for an odd aligned word operand.

The second or third cycle of a processor exten-
sion data transfer.

Local bus request via HOLD input.

Processor extension data operand transfer via
PEREQ input.

I
|
|
|
|
|
|
I
I
I
I
I
1
1
1
1
1
: Data transfer performed by EU as part of an
! instruction.

(Lowest) An instruction prefetch request from BU. The
EU will inhibit prefetching two processor clocks
in advance of any data transfers to minimize

waiting by the EU for a prefefch to finish.

Halt or Shutdown Cycles

The 80C286 externally indicates halt or shutdown conditions
as a bus operation. These conditions occur due to a HLT
instruction or multiple protection exceptions while attempting
to execute one instruction. A halt or shutdown bus operation
is signalled when S7, Sg and COD/INTA are LOW and M/IO
is HIGH. Ay HIGH indicates halt, and Ay LOW indicates
shutdown. The 82C288 bus controller does not issue ALE,
nor is READY required to terminate a halt or shutdown bus
operation.

During halt or shutdown, the 80C286 may service PEREQ or
HOLD requests. A processor extension segment overrun
during shutdown will inhibit further service of PEREQ. Either
NMI or RESET will force the 80C286 out of either halt or
shutdown. An INTR, if interrupts are enabled, or a processor
extension segment overrun exception will also force the
80C286 out of halt.

System Configurations

The versatile bus structure of the 80C286 micro-system, with
a full complement of support chips, allows flexible configura-
tion of a wide range of systems. The basic configuration,
shown in Figure 30, is similar fo an 80C86 maximum mode
system. It includes the CPU plus an 82C59A interrupt con-
troller, 82C284 clock generator, and the 82C288 Bus Con-
troller. The 80C86 latches (82C82 and 82C83H) and
transceivers (82C86H and 82C87H) may be used in an
80C286 microsystem.

As indicated by the dashed lines in Figure 30, the ability to
add processor extensions is an integral feature of 80C286
based microsystems. The processor extension interface
allows external hardware to perform special functions and
transfer data concurrent with CPU execution of other instruc-
tions. Full system integrity is maintained because the
80C286 supervises all data fransfers and instruction execu-
tion for the processor extension.

An 80C286 system which includes the 80287 numeric proces-
sor extension (NPX) uses this interface. The 80C286/80287
system has all the instructions and data types of an 80C86 or
80C88 with 8087 numeric processor extension. The 80287
NPX can perform numeric calculations and data transfers
concurrently with CPU program execution. Numerics code
and data have the same integrity as all other information pro-
tected by the 80C286 protection mechanism.

The 80C286 can overlap chip select decoding and address
propagation during the data transfer for the previous bus
operation. This information is laiched into the 82C82/83H's
by ALE during the middle of a Tg cycle. The latched chip
select and address information remains stable during the
bus operation while the next cycle's address is being
decoded and propagated into the system. Decode logic can
be implemented with a high speed PROM or PAL.

The optional decode logic shown in Figure 30 takes advan-
tage of the overlap between address and data of the 80C286
bus cycle to generate advanced memory and I/O select sig-
nals. This minimizes system performance degradation
caused by address propagation and decode delays. In addi-
tion to selecting memory and I/0O, the advanced selects may
be used with configurations supporting local and system
buses to enable the appropriate bus interface for each bus
cycle. The COD/INTA and M/IO signals are applied to the
decode logic to distinguish between interrupt, I/O, code, and
data bus cycles.

By adding the 82289 bus arbiter chip the 80C286 provides a
Multibus system bus interface as shown in Figure 31. The
ALE output of the 82C288 for the Multibus bus is connected to
its CMDLY input to delay the start of commands one system
CLK as required to meet Multibus address and write data
setup times. This arrangement will add at least one extra T
state to each bus operation which uses the Multibus.

A second 82C288 bus controller and additional latches and
transceivers could be added to the local bus of Figure 31.
This configuration allows the 80C286 to support an on-board
bus for local memory and peripherals, and the Multibus for
system bus interfacing.

37

80C286

INTA CYCLE 1 - INTACYCLE 2

BUS CYCLE | Tc Ts | Tc Tc l | Ts
TYPE [41 142 o1 Loz le1 | 92 1| 42 o1|02 ¢1|o2 o1|02 o1l¢2 o1|02 o1l¢2 o1 | 92

— CLK

/

S1+50

Mo,
COD/INTA

/ /
-\ [/
- et e

(SEE NOTE 22) (SEE NOTE 22)

A%'AU D l-----------(DON'T CARE)----------l E
BHE D .----------.(DON'T CARE).----------. G
e (SEE NOTE 18)

80C286

(SEE NOTE 19) (SEE NOTE 20)
— wmeovy |\ [/ / W\ [/ /
NOTREADY READY NOTREADY READY

INTA __/
MCE _/_\

;
]

| WY A
/ \
/\
A W /
[

- DEN / \

NOTES:
18. Data is ignored.
19. First INTA cycle should have at least one wait state inserted to meet 82C59A minimum INTA pulse width.

20. Second INTA cycle must have at least one wait state inserted since the CPA will not drive Ap3-Ag, BHE, and LOCK until after the first T
state. The CPU imposed one/clock delay prevents has contention between cascade address buffer being disabled by MCE | and address
outputs.

21. Without the wait state, the 80C286 address will not be valid for a memory cycle started immediately after the second INTA cycle. The
82C59A also requires one wait state for minimum INTA pulse width.

22. LOCK is active for the first INTA cycle to prevent the 82289 from releasing the bus between INTA cycles in a multi-master system. LOCK
is also active for the second INTA cycle.

23. Aog-Ag exits three-state OFF during ¢2 of the second T in the INTA cycle.
FIGURE 29. INTERRUPT ACKNOWLEDGE SEQUENCE

38

80C286

L]«
HanEo
“SNYHL
snga v.1va H.82284HO A
H98228
% h P e e e e o e g
1 1
||||| +, (wnoldo)
H3I110H1INOD e ——_.7% NOISN3LX3
LdNYY3ILNI b, HOSS3I00Hd |
vesozs | A—— e
2y - 0y HV g %9 Ne—— _ﬁ Ig-Sig N
N3idS ndo t g V!
ad |« 982208 g M
M [oFyIde ===+ 1 !
vini |+ Wovadl- - - - - - a1 " "
19313S dHY —¥ o INI »| HiNI Asngle - - - - - a0
o0y Z0gyn douyafe - - - - - - 0
Y vaH[> rPmmma]
aIoH [I rpm ==
< aHg N J— .
HOLv'1 N 0w . 52 15} 11 | HoLwdaNad
HEsoZ8 v - €%y 1S D 9013
HO 28028 T —
= v - - dvinigos Enm__w B " " 82028
sna ss3daay A.| 30 “ 1 1+ 3201 ' N3AQHY fe——— 3719¥N3
ais |« . 1 ol 13s34 P AQHY [&—— AQvad ONASY
1 I —) 1 NIAQHS — 3F19¥N3
r=4 43 1 i o 1353y AGHS 4 AQY3aH ONAS
==y 1 r4+ + =4 1 1 N
4 r=—44t+F 4+ ol ‘ |
":qzo_k_ov".””.[_ - " _m"m__| =
S10313SdHO ONANY ¢ - -4 300030 M ---F14 1 yila A9 —mo_ oals L
AHOWAW QIONYAQY « - — 4 € ---FF-- Naq Advay Advad ._|
o 201 % % S34 fe—e 13say
v 0s 0s
ADAQTTMONNIY LdNHYTLINI < YANI = kX
LM Ofl < MO ATaWD L
avad o/l < ‘NHOI b fDL
ALIHM AHOWAIN < 01 M an
avad AHOWAIN < 2aHN N3V 1
UU>
HIT10HLNOD A

SNg 882228

FIGURE 30. BASIC 80C286 SYSTEM CONFIGURATION
39

80C286

sng viva

1 1
1 | @ |}-=-=-=- }y (wNolLdo)
||||| % NOISNALxa
¥, HOSS300Md
H37104.LNOD Em oy
LdNYYALNI | ﬁ o .__. .w
65028 1 1
1q -9 0g-Slg Py " 1
E_._um__HV q 3 ndo T
N3IdS 982208 I
ay |« DA€ ===+ 1 | ;1
um [AOWAdf = ====+= 1 1 1 I
VNI ¢ N Asngle == ===42 1 1 1
193138 dIHO —»] SO INI] HINI goduaj¢ - ------ R
oy Flsyo vaHP> 1
3 Q10H|«+ ==
P AN |+ Pm===
4 5 aHg o P
Howv A Oy - E2y Is) HOLVHaNIO
HESDZ8 —
N —] ¥.INIa02 EHW__M - 1 82028
sng ssadaay < _ E[e] —] 2201 1 NIAQYY j¢&— 318vN3
als e Ol 13S34 1 AQHY j&——— AQv3d ONASY
T 1 N3AQYS & 379vN3
1 . 13534 AQUS & AQv3H ONAS
] —
om 1 ¢ |
Y3 TION INOO SNE i W =
us1q 882028 1o fe 110 yodl— H
Naa AQu3Y e AQvayd
301 Isp¢ PLS s je—e—F— 1352
awv oS j¢ »[0S, .
IDAITMONAIY LdNHYALNI < Y.N| X X
ALIKM Ofl OMOI Atano le
avad o/l < JHOI _I_=_L
ALIHM AHOWIIN < DM)
av3d AHOWIW « oaHIy NIV [«
20,
Hallgyy sng
68228
o N3
»1 %201 A0 e
<+——»]byugo Eqmﬁm M
+———|Asng sl
NOlLvullgdy sng | ——>NHd8 ynng5],
SNAILTNN < +——oddg §ivmavl® |
+———b3u8 " puadl« 205
——LINI 13534}«
—»{ 17108 20
asay/asisf—

FIGURE 31. MULTIBUS SYSTEM BUS INTERFACE

40

80C286

Absolute Maximum Ratings Thermal Information

Supply Voltage 8.0V Thermal Resistance (Typical) 8ya (°CCW) 8¢ (°C/W)
Input, Qutput or /O Voltage Applied. GND -1.0Vto Vg +1.0V PDIP Package. 35 6
Storage Temperature Range -659C to +150°C CERDIP Package 33 9
Junction Temperature, PGA. +175°C Maximum Package Power Dissipation
PLCC .. +150°C PGAPackage 1.22W
Lead Temperature (Soldering, 10s) +300°C PLCCPackage 2.2W
(PLCC - Lead Tips Only) Gate Countl 22,500

CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage fo the device. This is a stress only rating and operation
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

Operating Voltage Range Operating Temperature Range
80C286-10, 12 +4.5V to +5.5V I80C286-10,-12, -16,-20 -40°C 1o +85°C
80C286-16, 20,25 +4.75V 10 +5.25V C80C286-12,-16,-20,-25. 09C to +70°C

DC Electrical Specifications V¢ = +5V £ 10%, Ta = 0°C to +70°C (C80C286-12), Vg = +5V + 5%, Ta = 0°C to +70°C
(G80G286-16, -20, -25), Vi = +5V + 10%, Tp = -40°C 1o +85°C (I80C286-10, -12), Voo = +5V + 5%,
T =-40°C 1o +85°C (180G286-16, -20)

SYMBOL PARAMETER MIN MAX UNITS TEST CONDITIONS
Vi Input LOW Voltage -05 0.8 \
Vin Input HIGH Voltage 2.0 Vee +0.5 \
Vile CLK Input LOW Voltage -05 1.0 \
Vibe CLK Input HIGH Volitage 36 Vee +0.5 \
VoL Output LOW Voltage - 04 \ loL =2.0mA
Vou Output HIGH Voltage 3.0 - \ lgy =-2.0mA, Igy = -100pA
Vee -04 -
Iy Input Leakage Current -10 10 pA Vin =GND or Ve
Pins 29, 31, 57, 59, 61, 63-64
Iy Input Sustaining Current on BUSY and -30 -500 pA Viny = GND (See Note 28)
ERROR Pins
lBHL Input Sustaining Current LOW 38 200 pA Viy = 1.0V (See Note 24)
lgHH Input Sustaining Current HIGH -50 -400 pA Viy = 3.0V (See Note 25)
lo Output Leakage Current -10 10 pA Vg =GND or Ve
Pins 1, 7-8, 10-28, 32-34
lccop Active Power Supply Current - 185 mA 80C286-10 (See Note 27)
- 220 mA 80C286-12 (See Note 27)
- 260 mA 80C286-16 (See Note 27)
- 310 mA 80C286-20 (See Note 27)
- 410 mA 80C286-25 (See Note 27)
lcese Standby Power Supply Current - 5 mA (See Note 26)
Capacitance T, =+25°C, All Measurements Referenced to Device GND
SYMBOL PARAMETER TYP UNITS TEST CONDITIONS
Celk CLK Input Capacitance 10 pF FREQ = 1MHz
Cin Other Input Capacitance 10 pF
Cio I/O Capacitance 10 pF
NOTES:

24. |gy1 should be measured after lowering V)y to GND and then raising to 1.0V on the following pins: 36-51, 66, 67.

25. |gyy should be measured after raising V|y to Ve and then lowering to 3.0V on the following pins: 4-6, 36-51, 66-68.

26. lpoesp tested with the clock stopped in phase two of the processor clock cycle. Viy = Vo or GND, Vee = Ve (Max), outputs unloaded.

27. lceop measured at 10MHz for the 80C286-10, 12.5MHz for the 80C286-12, 16MHz for the 80C286-16, 20MHz for the 80C286-20, and
25MHz for the 80C286-25. Vi = 2.4V or 0.4V, Ve = Ve (Max), outputs unloaded.

28. Igy should be measured after raising Viy to Ve and then lowering to GND on pins 53 and 54.

41

80C286

AC Electrical Specifications Vg = +5V £10%, T = 0°C to +70°C (C80C286-12), Ta = -40°C to +85°C (180C286-10, -12)
Vo = +5V 5%, Tp = 0°C to +70°C (C80C286-16), Ta = -40°C to +85°C (180C286-16) AC Timings
are Referenced to 0.8V and 2.0V Points of the Signals as lllustrated in Data Sheet Waveforms,

Unless Otherwise Specified

10MHz 12.6MHz 16MHz TEST
SYMBOL PARAMETER MIN MAX | MIN MAX MIN MAX | UNIT CONDITION
TIMING REQUIREMENTS
1 System Clock (CLK) Period 50 - 40 - 31 - ns
2 System Clock (CLK) LOW Time 12 - 11 - 7 - ns |At1.0V
3 System Clock (CLK) HIGH Time 16 - 13 - 11 - ns |At3.6V
17 System Clock (CLK) RISE Time - 8 - 8 - 5 ns |[1.0Vto36V
18 System Clock (CLK) FALL Time - 8 - 8 - 5 ns |36Vto1.0V
4 Asynchronous Inputs SETUP Time 20 - 15 - 5 - ns | (Note 29)
5 Asynchronous Inputs HOLD Time 20 - 15 - 5 - ns | (Note 29)
6 RESET SETUP Time 19 - 10 - 10 - ns
7 RESET HOLD Time 0 - 0 - 0 - ns
8 Read Data SETUP Time 8 - 5 - 5 - ns
9 Read Data HOLD Time 4 - 4 - 3 - ns
10 READY SETUP Time 26 - 20 - 12 - ns
11 READY HOLD Time 25 - 20 - 5 - ns
20 Input RISE/FALL Times - 10 - 8 - 6 ns |[08Vto20V
TIMING RESPONSES
12A | Status/PEACK Active Delay 1 22 1 21 1 18 ns |1, (Notes 31, 35)
12B Status/PEACK Inactive Delay 1 30 1 24 1 20 ns |1, (Notes 31, 34)
13 Address Valid Delay 1 35 1 32 1 27 ns |1, (Notes 30, 31)
14 Write Data Valid Delay 0 40 0 3 0 28 ns |1, (Notes 30, 31)
15 Address/Status/Data Float Delay 0 47 0 32 0 29 ns |2, (Note 33)
16 HLDA Valid Delay 0 47 0 25 0 25 ns |1, (Notes 31, 36)
19 Address Valid to Status SETUP Time 27 - 22 - 16 - ns |1, (Notes 31, 32)
NOTES:
29. Asynchronous inputs are INTR, NMI, HOLD, PEREQ, ERROR, and BUSY . This specification is given only for testing purposes, to assure

recognition at a specific CLK edge.

30. Delay from 1.0V on the CLK 10 0.8V or 2.0V.
31. QOutput load: G| = 100pF.
32. Delay measured from address either reaching 0.8V or 2.0V (valid) to status going active reaching 0.8V or status going inactive reaching
20V.
33. Delay from 1.0V on the CLK to Float (no current drive) condition.
34. Delay from 1.0V on the CLK to 0.8V for min. (HOLD time) and to 2.0V for max. (inactive delay).
35. Delay from 1.0V on the CLK to 2.0V for min. (HOLD time) and to 0.8V for max. (active delay).
36. Delay from 1.0V on the CLK to 2.0V.
AC Test Conditions
TEST CONDITION I (CONSTANT CURRENT SOURCE) CL
1 [2.0mA| 100pF
2 -6mA (Voy to Float) 100pF
8mA (Vg to Float)

42

80C286

AC Electrical Specifications Vi = +5V £5%, Ta = 0°C to +70°C (C80C286-20, -25), Tp = -40°C to +85°C (180C286-20)
AC Timings are Referenced to the 1.5V Point of the Signals as lllustrated in Data Sheet Waveforms,
Unless Otherwise Specified

20MHz 25MHz
SYMBOL PARAMETER MIN MAX MIN MAX UNIT TEST CONDITION
TIMING REQUIREMENTS
1 System Clock (CLK) Period 25 - 20 - ns
2 System Clock (CLK) LOW Time 6 - 5 - ns At 1.0V
3 System Clock (CLK) HIGH Time 9 - 7 - ns At 3.6V
17 System Clock (CLK) RISE Time - 4 - 4 ns 1.0V 10 3.6V
18 System Clock (CLK) FALL Time - 4 - 4 ns 36Vio 1.0V
4 Asynchronous Inputs SETUP Time 4 - 4 - ns (Note 37)
5 Asynchronous Inputs HOLD Time 4 - 4 - ns (Note 37)
6 RESET SETUP Time 10 - 10 - ns
7 RESET HOLD Time 0 - 0 - ns
8 Read Data SETUP Time 3 - 3 - ns
9 Read Data HOLD Time 2 - 2 - ns
10 READY SETUP Time 10 - 9 - ns
11 READY HOLD Time 3 - 3 - ns
20 Input RISE/FALL Times - 6 - 6 ns 08Vio2.0V
TIMING RESPONSES
12A | Status/PEACK Active Delay 1 15 1 12 ns |1, (Notes 39, 42)
12B | Status/PEACK Inactive Delay 1 16 1 13 ns |1, (Notes 39, 42)
13 Address Valid Delay 1 23 1 20 ns 1, (Notes 38, 39)
14 Write Data Valid Delay 0 27 0 24 ns 1, (Notes 38, 39)
15 Address/Status/Data Float Delay 0 25 0 24 ns 2, (Note 41)
16 HLDA Valid Delay 0 20 0 19 ns 1, (Notes 38, 39)
19 Address Valid to Status SETUP Time 9 - 12 - ns 1, (Notes 39, 40)
NOTES:

37. Asynchronous inputs are INTR, NMI, HOLD, PEREQ, ERROR, and BUSY . This specification is given only for testing purposes, to assure

38.
39.
40.

recognition at a specific CLK edge.
Delay from 1.0V on the CLK to 1.5V.
Output load: C; = 100pF.

Delay measured from address reaching 1.5V to status reaching 1.5V.

41. Delay from 1.0V on the CLK to Float (no current drive) condition.
42. Delay from 1.0V on the CLK to 1.5V,
AC Test Conditions
TEST CONDITION I (CONSTANT CURRENT SOURCE) CL
1 [2.0mA| 100pF
2 -6mA (Vgy to Float) 100pF
8mA (Vg to Float)

43

80C286

AC Specifications (Continued)

4.0v
CLK INPUT

0.45v

C80C86-12, -16
180C286-10, -12, -16
AC DRIVE AND MEASURE POINTS - CLK INPUT

3.6V

4.0V
/ 3.6V
CLK INPUT
\ 1.0v 1.0V
0.45V
‘ tseTUP thoLp
2.4V
2.0V 2.0V 3
OTHER
DEVICE
INPUT
0.8V 0.8V
0.4V .
<— IpeLAyY (MAX)—=
=— IpgLay (MAX)—> ‘
2.0V
DEVICE
OUTPUT
0.8V

NOTE: For AC testing, input rise and fall times are driven at 1ns per volt.

FIGURE 32.

44

80C286

AC Specifications (Continued)

4.0v

CLK INPUT

0.45v

4.0v

CLK INPUT

0.45v

2.4v
OTHER

DEVICE
INPUT

0.4v

DEVICE
QUTPUT

C80C286-20, -25
180C286-20

AC DRIVE AND MEASURE POINTS - CLK INPUT

3.6V

3.6V

\ 1.0V 1.0v
tseTUP tHoLD
- - -~
2.0V 2.0V
0.8V 0.8V
1
pELAY —™
1.5V

NOTE: Typical Output Rise/Fall Time is 6ns. For AC testing, input rise and fall times are driven at 1ns per volt.

FIGURE 33.

45

80C286

AC Electrical Specifications 82C284 and 82C288 Timing Specifications are given for reference only and no guarantee is implied.

82C284 Timing
10MHz 12.6MHz 16MHz TEST
SYMBOL PARAMETER MIN MAX | MIN MAX MIN MAX | UNIT CONDITION
TIMING REQUIREMENTS
11 SRDY/SRDYEN Setup Time 15 - 15 - 10 - ns
12 SRDY/SRDYEN Hold Time 2 - 2 - 1 - ns
13 ARDY/ARDYEN Setup Time 5 - 5 - 3 - ns | (Note 43)
14 ARDY/ARDYEN Hold Time 30 - 25 - 20 - ns | (Note 43)
TIMING RESPONSES
19 PCLK Delay 0 20 0 16 0 15 ns |C_ =75pF,
loL = 5mA,
lgy = TmA
NOTE:
43. These times are given for testing purposes to ensure a predetermined action.
82C288 Timing
10MHz 12.6MHz 16MHz TEST
SYMBOL PARAMETER MIN MAX | MIN MAX MIN MAX | UNIT CONDITION
TIMING REQUIREMENTS
12 CMDLY Setup Time 15 - 15 - 10 - ns
13 CMDLY Hold Time 1 - 1 - 0 - ns
TIMING RESPONSES
16 ALE Active Delay 1 16 1 16 1 12 ns
17 ALE Inactive Delay - 19 - 19 - 15 ns
19 DT/R Read Active Delay - 23 - 23 - 18 ns | Cp =150pF
20 DEN Read Active Delay - 21 - 21 - 16 ns |lgL = 16mA Max
21 DEN Read Inactive Delay 3 23 3 21 5 14 ns |lgL = 1TmA Max
22 DT/R Read Inactive Delay 5 24 5 18 5 14 ns
23 DEN Write Active Delay - 23 - 23 - 17 ns
24 DEN Write Inactive Delay 3 23 3 23 3 15 ns
29 Command Active Delay from CLK 3 21 3 21 3 15 ns |Gy =300pF
30 Command Inactive Delay from CLK 3 20 3 20 3 15 ns |lgL =32mA Max
NOTE:

44. These times are given for testing purposes to ensure a predetermined action.

46

80C286

Waveforms
READ CYCLE WRITE CYCLE
ILLUSTRATED WITHZERO ILLUSTRATED WITH ONE READ
BUS WAIT STATES WAIT STATE (Ts OR Ts)
CYCLE TYPE T ® Ts Tc Ts Tc Tc
B Vou |TdT2 7T w2 | e | ez | et | a2 e | e2 | o1 | e2 | e
oLK X AYAYE WA VA VA VA WAWE WS
VoL - @—- -— —- -— @
s1-%0 X /7 /
- - @)=
Azz-Ag @ -|H- "'@"'h
mio, cop, | VALID ADDRESS VAL|D ADDRESS D(VALID|IF Tg
8 INTA e
g - @ |-l— — @ -_—
@ BHE,LOCK | ~ Y| VALID CONTROL vALlID CONTROL | X x:c
®—I— -
L= (3) —- @J—-—
Dis-Dp "= = e s sessessssieee e o= - {{{{{ VALID WRITE DATA)))
VALID READ DATA
— |-® —- @‘*
READY | 7 I\ Z11
— @
—-— -—
_ - (1D
SRDY + SRDYEN | B |
g - -—
g ARDY + ARDYEN | _ / T |
PLCK _/__/ /| \/ _/__—/__\-
— - =L "®
ALE /_ ~\ f-
- (@)= - .‘ > ~®
SN E) ~ 2~ @
cmpLy | N 7/ N\]
—- - @ -
w MWTC L . ;l
8 - - - - (SEE NOTE 1)
& MRDC N
—- -—
DT/R N -—
@~ =~ || @
O~ ® =
DEN

FIGURE 34. MAJOR CYCLE TIMING

NOTE: The modified timing is due to the CMDLY signal being active.

47

80C286

Waveforms (Continued)

BUS CYCLE TYPE
VeH
CLK _/_\
VeL
—-
PCLK

(SEE NOTE 47)

INTR, NMI

OO

Eamp S

HOLD, PEREQ
(SEE NOTE 45)

X

W_f

-~®

ERROR, BUSY
(SEE NOTE 46)

Al

FIGURE 35. 80C286 ASYNCHRONOUS INPUT SIGNAL TIMING

NOTES:

45. PCLK indicates which processor cycle phase will occur on the
next CLK, PCLK may not indicate the correct phase until the first

cycle is performed.

)F)

46. These inputs are asynchronous. The setup and hold times
shown assure recognition for testing purposes.

VeH

ax [N/

VeL —=

RESET

RESET

- T ——————=

$1

2

SEE NOTEA47)
-

1

a7)

FIGURE 36. 80C286 RESET INPUT TIMING AND SUBSEQUENT
PROCESSOR CYCLE PHASE

NOTE:

47. When RESET meets the setup time shown, the next CLK will
start or repeat ¢1 of a processor cycle.

48

80C286

Waveforms (Continued)

BUS
CYCLE TYPE TH TsORT) T TH
— VeH 2 1 42 1 92 o1 2
—o=(16)=
HLDA
(SEE NOTE 51)
- = SEE NOTE 50)
57 .50 ‘ @l) - :)‘-— (SEE NOTE 50)
o @ N % IF Ts .
§ > 4..@.*
8 CLK = = = = = = = = = o | = = 5% ! e
\ IF NPX TRANSFER
5 SEE NOTE 48)
BHE, LOCK (SEE NOTE 5;)' ® “_ @ -
Azz - Ay, 1
N RRREEEEAEES (4 ,:>>>>>>>
COD/INTA (SEE NOTE 49)
—- -—
(SEE NOTE 53)
D15-Du---------------------- " o EEEEEEEEEEEE ==
VALID IF WRITE
s
o PCLK
&
FIGURE 37. EXITING AND ENTERING HOLD
NOTES:
48. These signals may not be driven by the 80C286 during the time shown. The waorst case in terms of latest float time is shown.
49. The data bus will be driven as shown if the cycle before T) in the diagram was a write Tg.
50. The 80C286 puts its status pins in a high impedance logic one state during Ty.
51. For HOLD request set up to HLDA, refer to Figure 29.
52. BHE and LOCK are driven at this time but will not become valid until Tg.
53. The data bus will remain in a high impedance state if a read cycle is performed.

49

80C286

Waveforms (Continued)

BUS
CYCLE TYPE
T,
Vew | 2
CLK
VeL 1/0 READ IF PROC. EXT. TO MEMORY MEMORY WRITE IF PROC. EXT. TO MEMORY
(MEMORY READ IF MEMORY TO PROC. EXT. /O WRITE IF MEMORY TO PROC. EXT.
S1+50 \ / \ /
_MEMORY ADDRESS IF PROC. EXT. TO MEMORY TRANSFER I/0 PORT
/ ADDRESS 00FA(H) IF MEMORY TO PROC. EXT. TRANSFER
A23- AD 4
wio, —X_X :
COD INTA I 1I/0 PORT ADDRESS 00FA(H) IF PROC. EXT. TO MEMORY TRANSFER
-" - -" - MEMORY ADDRESS IF MEMORY TO PROC. EXT. TRANSFER
PEACK (SEENOTE54)
<—(SEE NOTE 5 - -
_|~®
PEREQ | |
T

ASSUMING WORD-ALIGNED MEMORY OPERAND. IF ODD ALIGNED, 80C286 TRANSFERS TO/FROM MEMORY BYTE-AT-A-TIME WITH TWO MEMORY
CYCLES.

FIGURE 38. 80C286 PEREQ/PEACK TIMING FOR ONE TRANSFER ONLY
NOTES:

54. PEACK always goes active during the first bus operation of a processor extension data operand transfer sequence. The first bus opera-
tion will be either a memory read at operand address or /O read at port address 00FA(H).

55. To prevent a second processor extension data operand transfer, the worst case maximum time (Shown above) is
3x (1) - 12Amax - @mn- The actual configuration dependent, maximum time is: 3 x (1) - 12Agax - @min + N x 2x (). N is the
number of extra T states added to either the first or second bus operation of the processor extension data operand transfer sequence.

BUS

CYCLE TYPE
T
Veu 52 Tx Tx Tx |

1 02 1 $2 $1 42 1 42

Vo = ~®
—- -— (SEE NOTE 56) @,‘"’ "_|

RESET AT LEAST (SEENOTE57) . |
16 CLK PERIODS 55—
—- @ |-u—
$1+50 5
UNKNOWN ;f
PEACK
RalClhs
Azz-Ag — L%
UNKNOWN
- @ -
wio UNKNOWN
COD/INTA - \ 55
O]
[y
LOCK UNKNOWN 4 i

— @ «— (SEE NOTE 58)
DATA | - GG .

@~ {F |

HLDA UNKNOWN

({4

Lt

FIGURE 39. INITIAL 80C286 PIN STATE DURING RESET
NOTES:

56. Setup time for RESET T may be violated with the consideration that ¢1 of the processor clock may begin one system CLK period later.
57. Setup and hold times for RESET | must be met for proper operation, but RESET | may occur during ¢1 or $2.
58. The data bus is only guaranteed to be in a high impedance state at the time shown.

50

80C286

Waveforms (Continued)

BYTE 1 BYTE 2 BYTE 3

7654321076543210

I I I I I | | | | | LOW DISP/DATA
OPCODE |d|w|moD| REG R/M

“ Lt

REGISTER OPERAND REGISTERS TO USE IN OFFSET CALCULATION
REGISTER OPERAND/EXTENSION OF OPCODE

REGISTER MODE/MEMORY MODE WITH DISPLACEMENT LENGTH
WORD/BYTE OPERATION

DIRECTION IS TO REGISTER DIRECTION IS FROM REGISTER
OPERATION (INSTRUCTION) CODE

FIGURE 40A. SHORT OPCODE FORMAT EXAMPLE

BYTE 1 BYTE 2 BYTE 3
765432107654321076543210

LONG OPCODE MOD| REG R/M
1

FIGURE 40B. LONG OPCODE FORMAT EXAMPLE
FIGURE 40. 80C286 INSTRUCTION FORMAT EXAMPLES

80C286 Instruction Set Summary
Instruction Timing Notes

The instruction clock counts listed below establish the maxi-
mum execution rate of the 80C286. With no delays in bus
cycles, the actual clock count of an 80C286 program will
average 5% more than the calculated clock count, due to
instruction sequences which execute faster than they can be
fetched from memory.

To calculate elapsed times for instruction sequences, mulii-
ply the sum of all instruction clock counts, as listed in the
table below, by the processor clock period. An 12.5MHz pro-
cessor clock has a clock period of 80 nanoseconds and
requires an 80C286 system clock (CLK input) of 256MHz.

Instruction Clock Count Assumptions

1. The instruction has been perfected, decoded and is
ready for execution. Control transfer instruction clock
counts include all time required to feich, decode, and
prepare the next instruction for execution.

2. Bus cycles do not require wait states.

3. There are no processor extension data transfer or local
bus HOLD requests.

4. No exceptions occur during instruction execution.
Instruction Set Summary Notes

Addressing displacements selected by the MOD field are not
shown. If necessary they appear after the instruction fields
shown.

Above/below refers to unsigned value.

Greater refers to more positive signed values.

Less refers to less positive (more negative) signed values
if d = 1, then “to” register; if d = 0 then “from” register

if w =1, then word instruction; if w = 0, then byte instruction
if s = 0, then 16-bit immediate data form the operand

if s = 1, then an immediate data byte is sign-extended to
form the 16-bit operand

X don't care
z used for string primitives for comparison with ZF FLAG

If two clock counts are given, the smaller refers to a register
operand and the larger refers to a memory operand

* = add one clock if offset calculation requires summing 3
elements

n = number of times repeated
m = number of bytes of code in next instruction
Level (L) - Lexical nesting level of the procedure

The following comments describe possible exceptions, side
effects and allowed usage for instructions in both operating
modes of the 80C286.

51

80C286

Real Address Mode Only

1. This is a protected mode instruction. Attempted execu-
tion in real address mode will result in an undefined
opcode exception (6).

2. A segment overrun exception (13) will occur if a word
operand references at offset FFFF(H) is attempted.

3. This instruction may be executed in real address mode to
initialize the CPU for protected mode.

4. The IOPL and NT fields will remain 0.

5. Processor extension segment overrun interrupt (9) will
occur if the operand exceeds the segment limit.

Either Mode

6. An exception may occur, depending on the value of the
operand.

7. LOCK is automatically asserted regardless of the pres-
ence or absence of the LOCK instruction prefix.

8. LOCK does not remain active between all operand
transfers.

Protected Virtual Address Mode Only

9. A general protection exception (13) will occur if the mem-
ory operand cannot be used due to either a segment limit
or access rights violation. If a stack segment limit is vio-
lated, a stack segment overrun exception (12) occurs.

10. For segment load operations, the CPL, RPL and DPL
must agree with privilege rules to avoid an exception.
The segment must be present to avoid a not-present
exception (11). If the SS register is the destination and a

80C286 Instruction Set Summary

segment not-present violation occurs, a stack exception
(12) occurs.

11. All segment descriptor accesses in the GDT or LDT made
by this instruction will automatically assert LOCK to main-
tain descriptor integrity in multiprocessor systems.

12. JMP, CALL, INT, RET, IRET instructions referring to
another code segment will cause a general protection
exception (13) if any privilege rule is violated.

13. A general protection exception (13) occurs if CPL = 0.
14. A general protection exception (13) occurs if CPL > IOPL.

15. The IF field of the flag word is not updated if CPL > IOPL.
The IOPL field is updated only if CPL = 0.

16. Any violation of privilege rules as applied to the selector
operand does not cause a protection exception; rather,
the insfruction does not return a result and the zero flag
is cleared.

17. If the starting address of the memory operand violates a
segment limit, or an invalid access is attempted, a gen-
eral protection exception (13) will occur before the ESC
instruction is executed. A stack segment overrun excep-
tion (12) will occur if the stack limit is violated by the
operand’s starting address. If a segment limit is violated
during an attempted data transfer then a processor
extension segment overrun exception (9) occurs.

18. The destination of an INT, JMP, CALL, RET or IRET
instruction must be in the defined limit of a code segment
or a general protection exception (13) will occur.

FUNCTION FORMAT CLOCK COUNT COMMENTS
|REAL PRO- |REAL PRO-
ADDRES [TECTED ADDRES [TECTED
S VIRTUAL |S VIRTUAL
|[MODE |ADDRESS |MODE |ADDRESS

MODE MODE

DATA TRANSFER

MOV = Move

Register to Register/Mem-|1000100w [mod reg 2,3 2,3 2 9

ory r/m (Note 59) |(Note 59)

Register/Memory to Regis-|1000101w [mod reg 2,5 2,5 2 9

ter r/m (Note 59) |(Note 59)

Immediate to Register/Mem-|1100011w| mod 000|data data if 2 3 2.3 2 9

ory r/m w=1 (Note 59) |(Note 59)

Immediate to Register 1011w reg |data data if w = 2 2

1
Memory to Accumulator 1010000w |addr-low [addr-high 5 5 2 9

80C286

80C286 Instruction Set Summary (Continued)

FUNCTION FORMAT CLOCK COUNT COMMENTS
|REAL PRO- |REAL PRO-
ADDRES [TECTED ADDRES |TECTED
S VIRTUAL |S VIRTUAL
|[MODE |ADDRESS |MODE |ADDRESS
MODE MODE
Accumulator to Memory 1010001w |addr-low [addr-high 3 3 2 9
Register/Memory to $Seg-|10001110 [mod 0 reg 2,5 17,19 2 9, 10, 11
ment Register r/m (Note 59) |(Note 59)
Segment Register to Regis-| 10001100 [mod 0 reg 2,3 2,3 2 9
ter/Memory r/m (Note 59) |(Note 59)
PUSH = Push
Memory 11111111 [mod 110 5 5 2 9
r/m (Note 59) |(Note 59)
Register 01010reg 3 3 2 9
Segment Register 000 reg 3 3 2 9
110
Immediate 011010s0 |data data if s = 3 3 2 9
0
PUSHA = Push All 01100000 17 17 2 9
POP =Pop
Memory 10001111 [mod 000 5 5 2 9
r/m (Note 59) |(Note 59)
Register 01011 reg 5 5 2 9
Segment Register 000 reg|(reg = 01) 5 20 2 9,10, 11
111
POPA =Pop All 01100001 19 19 2 9
XCHG = Exchange
Register/Memory with Reg-|1000011w [mod reg 3,5 3,5 2,7 7.9
ister r/m (Note 59) |(Note 59)
Register with Accumulator (10010 reg 3 3
IN = Input From
Fixed Port 1110010w |port 5 5 14
Variable Port 1110110w 5 5 14
OUT = Qutput To
Fixed Port 1110011w |port 3 3 14
Variable Port 1110111w 3 3 14
XLAT = Translate Byte to|11010111 5 5 9
AL

53

80C286

80C286 Instruction Set Summary (Continued)

FUNCTION FORMAT CLOCK COUNT COMMENTS
|REAL PRO- |REAL PRO-
ADDRES [TECTED ADDRES |TECTED
S VIRTUAL |S VIRTUAL
|[MODE |ADDRESS |MODE |ADDRESS
MODE MODE
LEA = Load EA to Register [10001101 jmod reg 3 3
r/m (Note 59) |(Note 59)
LDS = Load Pointer to DS 11000101 [mod reg|(mod = 11) 7 21 2 9, 10, 11
r/m (Note 59) |(Note 59)
LES = Load Pointer to ES [{11000100 [mod reg|(mod = 1) 7 21 2 9, 10, 11
r/m (Note 59) |(Note 59)
LAHF Load AH with Flags |[10011111 2 2
SAHF = Store AH into Flags|10011110 2 2
PUSHF = Push Flags 10011100 3 3 2 9
POPF = Pop Flags 10011101 5 5 2,4 9,15
ARITHMETIC
ADD = Add
Reg/Memory with Register|000000dw [mod reg 2,7 2,7 2 9
to r/m (Note 59) |(Note 59)
Either
Immediate o Regis-|100000sw |mod 000|data data if 3,7 3,7 2 9
ter/Memory r/m sw =01 (Note 59) |(Note 59)
Immediate to Accumulator |0000010w |data data if w = 3 3
1
ADC = Add with Carry
Reg/Memory with Register|000100dw [mod reg 2,7 2,7 2 9
to r/m (Note 59) |(Note 59)
Either
Immediate o Regis-|100000sw |mod 010|data data if 3,7 3,7 2 9
ter/Memory r/m sw =01 (Note 59) |(Note 59)
Immediate to Accumulator |0001010w |data data if w = 3 3
1
INC = Increment
Register/Memory 1111111w |mod 000 2,7 2,7 2 9
r/m (Note 59) |(Note 59)
Register 01000 reg 2 2
SUB = Subtract
Reg/Memory and Register|001010dw [mod reg 2,7 2,7 2 9
to r/m (Note 59) |(Note 59)
Either

54

80C286

80C286 Instruction Set Summary (Continued)

FUNCTION FORMAT CLOCK COUNT COMMENTS
JREAL PRO- JREAL PRO-
ADDRES [TECTED ADDRES |TECTED
S VIRTUAL |S VIRTUAL
I[MODE |ADDRESS |MODE |ADDRESS
MODE MODE
Immediate from Regis-|100000sw |mod 101|data data if 3,7 3,7 2 9
ter/Memory r/m sw =01 (Note 59) |(Note 59)
Immediate from Accumula-|0010110w |data data if w = 3 3
tor 1
SBB = Subfiract with Borrow
Reg/Memory and Register|000110dw [mod reg 2,7 2,7 2 9
to r/m (Note 59) |(Note 59)
Either
Immediate from Regis-|100000sw |mod 011|data data if 3,7 3,7 2 9
ter/Memory r/m sw =01 (Note 59) |(Note 59)
Immediate from Accumula-|0001110w |data data if w = 3 3
tor 1
DEC = Decrement
Register/Memory 1111111w |mod 001 2,7 2,7 2 9
r/m (Note 59) |(Note 59)
Register 01001 reg 2 2
CMP = Compare
Register/Memory with Reg-|0011101w [mod reg 2,6 2,6 2 9
ister r/m (Note 59) |(Note 59)
Register with Regis-|0011100w |mod reg 2,7 2,7 2 9
ter/Memory r/m (Note 59) |(Note 59)
Immediate with Regis-|100000sw |mod 111|data data if 3,6 3,6 2 9
ter/Memory r/m sw =01 (Note 59) |(Note 59)
Immediate with Accumula-|0011110w |data data if w = 3 3
tor 1
NEG = Change Sign 1111011w mod 011 2 7 2 7
r/m (Note 59)
AAA = ASCII Adjust for Add|00110111 3 3
DAA = Decimal Adjust for|00100111 3 3
Add
AAS = ASCIl Adjust for|00111111 3 3
Subtract
DAS = Decimal Adlust for|00101111 3 3
Subtract
MUL = Multiply (Unsigned) (1111011w |mod 100
r/m

55

80C286

80C286 Instruction Set Summary (Continued)

FUNCTION FORMAT CLOCK COUNT COMMENTS
|REAL PRO- |REAL PRO-
ADDRES [TECTED ADDRES |TECTED
S VIRTUAL |S VIRTUAL
|[MODE |ADDRESS |MODE |ADDRESS
MODE MODE
Register - Byte 13 13
Register - Word 21 21
Memory - Byte 16 16 2 9
(Note 59) |(Note 59)
Memory - Word 24 24 2 9
(Note 59) |(Note 59)
IMUL = Integer Multiply 1111011w |mod 101
(Signed) r/m
Register - Byte 13 13
Register - Word 21 21
Memory - Byte 16 16 2 9
(Note 59) |(Note 59)
Memory - Word 24 24 2 9
(Note 59) |(Note 59)
IMUL = Interger Inmediate |011010s1 |mod reg|data data if s =j21,24 |21, 24 2 9
Multiply (Signed) r/m 0 (Note 59) |(Note 59)
DIV = Divide (Unsigned) 1111011w |mod 110
r/m
Register - Byte 14 14 I6 6
Register - Word 20 22 le 6
Memory - Byte 17 17 2,6 6,9
(Note 59) |(Note 59)
Memory - Word 25 25 26 6,9
(Note 59) |(Note 59)
IDIV = Integer Divide|1111011w |mod 111
(Signed) r/m
Register - Byte 17 17 I6 6
Register - Word 25 25 le 6
Memory - Byte 20 20 2,6 6,9
(Note 59) |(Note 59)
Memory - Word 28 28 26 6,9
(Note 59) |(Note 59)
AAM = ASCIlI Adjust for| 11010100(00001010 16 16
Multiply

56

80C286

80C286 Instruction Set Summary (Continued)

FUNCTION FORMAT CLOCK COUNT COMMENTS
|REAL PRO- |REAL PRO-
ADDRES [TECTED ADDRES |TECTED
S VIRTUAL |S VIRTUAL
|[MODE |ADDRESS |MODE |ADDRESS
MODE MODE
AAD = ASCIl Adjust for| 11010101 (00001010 14 14
Divide
CBW = Convert Byte to|10011000 2 2
Word
CWD = Convert Word to|10011001 2 2
Double Word
LOGIC
Shift/Rotate Instructions
Register/Memory by 1 1101000w [mod TTT 2,7 2,7 2 9
r/m (Note 59) |(Note 59)
Register/Memory by CL 1101001w [mod TTT 5+n, 8+n |5+n, 8+n 2 9
r/m (Note 59) |(Note 59)
Register/Memory by Count {1100000 |[mod TTT|count 5+n, 8+n |5+n, 8+n 2 9
r/m (Note 59) |(Note 59)
TTT Instruction
000 ROL
001 ROR
010 RCL
011 RCR
100 SHL/SAL
101 SHR
111 SAR
AND = And
Reg/Memory and Register|001000dw [mod reg 2,7 2,7 2 9
to r/m (Note 59) |(Note 59)
Either
Immediate o Regis-|1000000w |mod 100|data dataifw=|3,7 3,7 2 9
ter/Memory r/m 1 (Note 59) |(Note 59)
Immediate to Accumulator |0010010w |data data if w = 3 3
1
TEST = And Function to Flags, No Result
Register/Memory and Reg-|1000010w [mod reg 2,6 2,6 2 9
ister r/m (Note 59) |(Note 59)

57

80C286

80C286 Instruction Set Summary (Continued)

FUNCTION FORMAT CLOCK COUNT COMMENTS
IREAL PRO- IREAL PRO-
ADDRES [TECTED ADDRES |TECTED
S VIRTUAL |S VIRTUAL
IMODE |ADDRESS |MODE |ADDRESS
MODE MODE
Immediate Data and Regis-|1111011w |mod 000|data data if w =3, 6 3,6 2 9
ter/Memory r/m 1 (Note 59) |(Note 59)
Immediate Data and Accu-|1010100w |data data if w = 3 3
mulator 1
OR =0r
Reg/Memory and Register|000010dw [mod reg 27 2.7 2 9
to r/'m (Note 59) |(Note 59)
Either
Immediate o Regis-|1000000w |mod 001| data dataif w=|3,7 3,7 2 9
ter/Memory r/m 1 (Note 59) |(Note 59)
Immediate to Accumulator |0000110w |data data if w = 3 3
1
XOR = Exclusive or
Reg/Memory and Register|001100dw [mod reg 2,7 2,7 2 9
to r/m (Note 59) |(Note 59)
Either
Immediate to Regis-|1000000w |mod reg|data dataifw =|3,7 3,7 2 9
ter/Memory r/m 1 (Note 59) |(Note 59)
Immediate to Accumulator |0011010w |data data if w = 3 3
1
NOT = |Invert Regis-{1111011w|mod 010 27 2.7 2 9
ter/Memory r/m (Note 59) |(Note 59)
STRING MANIPULATION
MOVS = Move Byte/Word |1010010w 5 5 2 9
CMPS = Compare|1010011w I8 8 2 9
Byte/Word
SCAS = Scan Byte/Word [1010111w 7 7 2 9
LODS = Load Byte/Word to [1010110w 5 5 2 9
AL/AX
STOS = Store Byte/Word|1010101w 3 3 2 9
from AL/A
INS = Input Byte/Word from |0110110w 5 5 2 9,14
DX Port
OUTS = Output Byte/Word|0110111w 5 5 2 9,14
to
DX Port

58

80C286

siglowered
ON ‘[pnre ebajaug
8L2LIL '8 w+ 28 eleyiq 0} 8jen) |[eD BIA
jena] abajalg
8L2LIL '8 w+ |y alwes 0] ajey) |[BD BIA
(luawbBasiau| 10941Q)
1010995 Juswbag AJUQ apoy pa1oa10id
8Lgt ‘Lt 2 w+9z| w+gl 1980 ewbag| 0101 LOOI Juswbesiau| 10811
(6G 810N)| (6G @10N)
w+ P w+ L wyi Juawbasg upipa
8L ‘68 82 ‘Wtz Wy 0L0 pow| LELLLLELpoaapyl Aowselyyeisibey
8l Z w+z|l w+/ ybiy-dsip| mol-dsip| 000LOL LI ewbeg uiyan 10811g
Ir.eo =11vo
H34SNVHLTOHINOD
¥L 6 2 up+gl up+g MLLLOLIO| FEOOLELE Bus inding = s1NO
¥L'6 2 up+gl up+gl MOLLOLLO| FLOOKELL Buins indu) = gNI
68 8z ug+p| ug+ MLOLOLOL| FLOOLELE Bulng e101S = SO1S
68 8'g up+g| up+gl MOLILOLOL| FLOOLELE Buus peo1=sdon
68 8z ug+ g :m+m_ MLLIOLOL| ZLOOLELE Buing ueos = Syos
68 8'g ug+ S :m+m_ MLL00LOL| ZIoOKELE| Bums eredwo) = S4WD
6 2 up+ 6 Eim_ MOLOOLOL| FLOOLELE Buing anoly = SAOW
X0 ununod Aq pejeadey
Elale]}] Elale]}]
ss3adaav| 3aow| ssadaav| 3aow|
IVNLHIA S| vnLdia S
Q31oaL| s3daav] a3loAl| s3Haav
-Odd| Tvad| -Odd| vay|
SINIWINOD INNOD xoo._o_ 1¥IWHOd NOILONNA

(panuiuog) ARWWNS 195 UONINASU| 982908

All Intersil U.S. products are manufactured, assembled and tested utilizing 1ISO9000 quality systems.

Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any fime withou
Inotice. Accordingly, the reader is cautioned fo verify that data sheets are curmrent before placing orders. Information furnished by Intersil is believed to be accurate and

Ireliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may resulf

Ifrom its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

59

80C286

80C286 Instruction Set Summary (Continued)

FUNCTION FORMAT CLOCK COUNT COMMENTS
JREAL PRO- JREAL PRO-
ADDRES [TECTED ADDRES |TECTED
S VIRTUAL |S VIRTUAL
I[MODE |ADDRESS |MODE |ADDRESS
MODE MODE
Via Call Gate to Different 86 +4x+m 8 11,12, 18
Privilege Level, X Param-
eters
Via TSS 177 +m 8,11,12, 18
Via Task Gate 182 +m 8 11,12, 18
Indirect Intersegment 11111111 jmod O11|mod = 11 16+m [29+m 2 8,9 11, 12,
r/m (Note 59) |(Note 59) 18
Protected Mode Only (Indirect Intersegment)
Via Call Gate to Same 44 +m 8, 9, 11, 12,
Privilege Level (Note 59) 18
Via Call Gate to Different 83+m 8, 9, 11, 12,
Privilege Level, No (Note 59) 18
Parameters
Via Call Gate to Different 90 +4x+m 8, 9, 11, 12,
Privilege Level, X Param- (Note 59) 18
eters
Via TSS 180+ m 8,9, 11, 12,
(Note 59) 18
Protected Mode Only (Indirect Intersegment) (Continued)
Via Task Gate 185+ m 8, 9, 11, 12,
(Note 59) 18
JMP = Unconditional Jump
Short/Long 11101011 |disp-low 7+m 7+m 18
Direct Within Segment 11101001 |disp-low [disp-high 7+m 7+m 18
Register/Memory Indirect (11111111 {[mod 100 7+m, 7+m, 2 9,18
Within Segment r/m f1+m |11 +m
(Note 59) |(Note 59)
Direct Intersegment 11101010 |Segment Offset 11+m |23+m 11,12, 18
Protected Mode Only Segment Selector
(Direct Intersegment)
Via Call Gate to Same 38+m 8, 11,12,18
Privilege Level
Via TSS 175 +m 8,11,12,18
Via Task Gate 180 +m 8 11,12,18
Indirect Intersegment 11111111 jmod 101|mod = 11 15+m [26+m 2 8, 9, 11, 12,
r/m (Note 59) |(Note 59) 18

Protected Mode Only (Indirect Intersegment)

60

